Skip to main content

Disease Diagnostic Tools for Health Management in Aquaculture

  • Chapter
  • First Online:
Advances in Fisheries Biotechnology

Abstract

Disease diagnosis is an essential part of fish disease management and prevention. Starting from microscopic characterization and morphological descriptions, the diagnostic methods for aquatic animal pathogens have advanced to molecular characterization and probe-based diagnosis. Apart from microscopic, histological, microbiological and immunological techniques, the molecular tools ensure early detection of infectious disease and avoid severe mortalities and production losses to aquaculture. Additionally, the molecular sequencing techniques presently allow great advancement in biology and are improving diagnosis and control of pathogens by studying the complete genomes of pathogens. With the advancement in diagnostic tools, the specificity, sensitivity and speed of diagnosis have improved significantly in recent years which aids in epidemiological studies as well as in identification of causes of disease outbreaks or the presence of pathogens to prevent further spread of infectious fish diseases in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams A, Thompson KD, Morris D, Farias C, Chen SC (1995) Development and use of monoclonal antibody probes for immunohistochemistry, ELISA and IFAT to detect bacterial and parasitic fish pathogens. Fish Shellfish Immunol 5(8):537–547

    Article  Google Scholar 

  • Adel A, El-Ganainy S, Ahmed M, Morsy K, Mostafa N (2019) Light and scanning Electron microscopy on Cucullanus aliyaii Akhtar and Mujib (2012) (Nematoda: Cuculanidae) from the Rabbitfish Siganus canaliculatus of the Red Sea, Egypt. Egyptian academic journal of biological sciences. E Med Entomol Parasitol 11(2):95–103

    Google Scholar 

  • Ainsworth AJ, Capley G, Waterstreet P, Munson D (1986) Use of monoclonal antibodies in the indirect fluorescent antibody technique (IFA) for the diagnosis of Edwardsiellaictaluri. J Fish Dis 9(5):439–444

    Article  Google Scholar 

  • Altinok Ä°, Kurt Ä° (2003) Molecular diagnosis of fish diseases: a review. Turk J Fish Aquat Sci 3(2):131–138

    Google Scholar 

  • Austin B (2011) Taxonomy of bacterial fish pathogens. Vet Res 42(1):20

    Article  PubMed  PubMed Central  Google Scholar 

  • Austin B, Austin DA (eds) (1989) Methods for the microbiological examination of fish and shellfish. Ellis Horwood, Chichester, pp 317–327

    Google Scholar 

  • Austin B, Austin DA (2012) Bacterial fish pathogens, vol 481. Springer, Dordrecht, p 482

    Book  Google Scholar 

  • Clinton M, Kintner AH, Delannoy CM, Brierley AS, Ferrier DE (2020) Molecular identification of potential aquaculture pathogens adherent to cnidarian zooplankton. Aquaculture 518:734801

    Article  CAS  Google Scholar 

  • Coons AH, Creech HJ, Jones RN, Berliner E (1942) The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J Immunol 45(3):159–170

    CAS  Google Scholar 

  • Cunningham CO (2002) Molecular diagnosis of fish and shellfish diseases: present status and potential use in disease control. Aquaculture 206(1–2):19–55

    Article  CAS  Google Scholar 

  • de Magalhaes JP, Finch CE, Janssens G (2010) Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions. Ageing Res Rev 9:315–323

    Article  PubMed  CAS  Google Scholar 

  • Dias JAR, Abe HA, Sousa NC, Silva RDF, Cordeiro CAM, Gomes GFE, Maria AN et al (2019) Enterococcus faecium as potential probiotic for ornamental neotropical cichlid fish, Pterophyllum scalare (Schultze, 1823). Aquac Int 27(2):463–474

    Article  Google Scholar 

  • Dong H, Roy S, Zheng X, Kumar V, Das BK, Duan Y, Sun Y, Zhang J (2021) Dietary teprenone enhances non-specific immunity, antioxidative response and resistance to hypoxia induced oxidative stress in Lateolabrax maculatus. Aquaculture 533:736126

    Article  CAS  Google Scholar 

  • Ekman E, Norrgren L (2003) Pathology and immunohistochemistry in three species of salmonids after experimental infection with Flavobacterium psychrophilum. J Fish Dis 26(9):529–538

    Article  CAS  PubMed  Google Scholar 

  • El-Naggar MM, Cable J, ZakyArafa S, El-Abbassy SA, Kearn GC (2016) Scanning and transmission electron microscopy of the histopathological impact of Macrogyrodactylus clarii (Monogenea: Gyrodactylidae) on the gills of catfish, Clariasgariepinus. Folia Parasitol 63:017

    Article  Google Scholar 

  • Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 8(9):871–874

    Article  CAS  PubMed  Google Scholar 

  • FAO (2019) State of fisheries and aquaculture in the world. FAO, Rome

    Google Scholar 

  • Groisberg R, Roszik J, Conley A, Patel SR, Subbiah V (2017) The role of next-generation sequencing in sarcomas: evolution from light microscope to molecular microscope. Curr Oncol Rep 19(12):78

    Article  PubMed  CAS  Google Scholar 

  • Gu W, Miller S, Chiu CY (2019) Clinical metagenomic next-generation sequencing for pathogen detection. Annu Rev Pathol Mech Dis 14:319–338

    Article  CAS  Google Scholar 

  • Harris PJ (2019) Microscopy and literature. Endeavour 43(3):100695

    Article  PubMed  Google Scholar 

  • Herbeck LS, Unger D, Wu Y, Jennerjahn TC (2013) Effluent, nutrient and organic matter export from shrimp and fishponds causing eutrophication in coastal and back-reef waters of NE hainan, tropical China. Cont Shelf Res 57:92–104

    Article  Google Scholar 

  • Huang L, Qi W, Zuo Y, Alias SA, Xu W (2020) The immune response of a warm water fish orange-spotted grouper (Epinephelus coioides) infected with a typical cold water bacterial pathogen Aeromonas salmonicida is AhR dependent. Dev Comp Immunol 113:103779

    Article  CAS  PubMed  Google Scholar 

  • Jorink E (2018) 8 insects, philosophy and the microscope. In: Worlds of natural history. Cambridge University Press, Cambridge, p 131

    Chapter  Google Scholar 

  • Kalaimani N, Ravisankar T, Chakravarthy N, Raja S, Santiago TC, Ponniah AG (2013) Economic losses due to disease incidences in shrimp farms of India. Fish Technol 50:80–86

    Google Scholar 

  • Kumar V (2020) Acute hepatopancreatic necrosis disease (AHPND) in shrimp: virulence, pathogenesis and mitigation strategies. University of Ghent. Faculty of Bioscience Engineering

    Google Scholar 

  • Kumar V, Kumar K, Raman RP, Prasad KP, Roy R, Kumar K, Kumar K (2014a) Haematological and histopathological changes during carrageenan induced acute inflammatory response in Labeorohita (Hamilton, 1822) fingerlings. Int J Curr Microbiol App Sci 3(7):794–802

    CAS  Google Scholar 

  • Kumar V, Roy S, Barman D, Kumar A (2014b) Immunoserological and molecular techniques used in fish disease diagnosis: a mini review. Int J Fish Aquat 1(3):111–117

    Google Scholar 

  • Kumar V, Kumar K, Raman RP, Prasad KP, Kumar N, Kumar S, Roy S (2018) Evaluation of cellular induction, soluble components of proteins and expression of pro-inflammatory genes in Labeorohita fingerlings. J Environ Biol 39(4):486–492

    Article  CAS  Google Scholar 

  • Kumar V, Bels LD, Couck L, Baruah K, Bossier P, Broeck WVD (2019) PirABVP toxin binds to epithelial cells of the digestive tract and produce pathognomonic AHPND lesions in germ-free brine shrimp. Toxins 11(12):717

    Article  CAS  PubMed Central  Google Scholar 

  • Kumar V, Roy S, Baruah K, Van Haver D, Impens F, Bossier P (2020) Environmental conditions steer phenotypic switching in acute hepatopancreatic necrosis disease-causing Vibrio parahaemolyticus, affecting PirAVP/PirBVP toxins production. Environ Microbiol 22(10):4212–4230

    Article  CAS  PubMed  Google Scholar 

  • Lakshman M (2019) Application of conventional electron microscopy in aquatic animal disease diagnosis: a review. J Entomol Zool Stud 7:470–475

    Google Scholar 

  • Love NE, Lewbart GA (1997) Pet fish radiography: technique and case history reports. Vet Radiol Ultrasound 38(1):24–29

    Article  CAS  PubMed  Google Scholar 

  • Lulijwa R, Alfaro AC, Merien F, Meyer J, Young T (2019) Advances in salmonid fish immunology: a review of methods and techniques for lymphoid tissue and peripheral blood leucocyte isolation and application. Fish Shellfish Immunol 95:44–80

    Article  CAS  PubMed  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74:560–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra SS, Das R, Sahoo SN, Swain P (2020) Biotechnological tools in diagnosis and control of emerging fish and shellfish diseases. In: Genomics and biotechnological advances in veterinary, poultry, and fisheries. Academic Press, Cambridge, MA, pp 311–360

    Chapter  Google Scholar 

  • Mullis K, Faloona F, Scharf S, Saiki RK, Horn GT, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. In: Cold Spring Harbor symposia on quantitative biology, vol 51. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 263–273

    Google Scholar 

  • Noga EJ (2010) Fish disease: diagnosis and treatment. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Patchimpet J, Sangkharak K, Klomklao S (2019) Lipolytic activity of viscera extract from three freshwater fish species in Phatthalung, Thailand: comparative studies and potential use as dishwashing detergent additive. Biocatal Agric Biotechnol 19:101143

    Article  Google Scholar 

  • Roy S, Kumar V, Bossier P, Norouzitallab P, Vanrompay D (2019) Phloroglucinol treatment induces transgenerational epigenetic inherited resistance against vibrio infections and thermal stress in a brine shrimp (Artemia franciscana) model. Front Immunol 10:2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt B, Henderson L (2005) Diagnostic tools for animal diseases. Revue scientifiqueet technique-Office international des épizooties 24(1):243

    CAS  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Sherman DM, Markham RJ, Bates F (1984) Agar gel immunodiffusion test for diagnosis of clinical paratuberculosis in cattle. J Am Vet Med Assoc 185(2):179–182

    CAS  PubMed  Google Scholar 

  • Sirri R, Tura G, Budai J, Beraldo P, Fiorentino M, Barbé T, Galeotti M, Sarli G, Mandrioli L (2020) Histological and immunohistochemical characterization of 17 gonadal tumours in koi carp (Cyprinus carpio koi). J Fish Dis 44(3):273–285

    Article  PubMed  CAS  Google Scholar 

  • Smith LM, Sanders JZ, Kaiser RJ et al (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321:674–679

    Article  CAS  PubMed  Google Scholar 

  • Steffan RJ, Atlas R (1991) Polymerase chain reaction: applications in environmental microbiology. Annu Rev Microbiol 45(1):137–161

    Article  CAS  PubMed  Google Scholar 

  • Tacon AGJ (2020) Trends in global aquaculture and Aquafeed production: 2000–2017. Rev Fish Sci Aquac 28:43–56

    Article  Google Scholar 

  • Tesser CD, Norman AH (2016) Differentiating clinical care from disease prevention: a prerequisite for practicing quaternary prevention. Cadernos de saudepublica 32:e00012316

    Google Scholar 

  • Toranzo AE, Baya AM, Roberson BS, Barja JL, Grimes DJ, Hetrick FM (1987) Specificity of slide agglutination test for detecting bacterial fish pathogens. Aquaculture 61(2):81–97

    Article  Google Scholar 

  • Vadstein O, Bergh Ø, Gatesoupe FJ, Galindo-Villegas J, Mulero V, Picchietti S, Scapigliati G, Makridis P, Olsen Y, Dierckens K, Defoirdt T (2013) Microbiology and immunology of fish larvae. Rev Aquacult 5:S1–S25

    Article  Google Scholar 

  • Verdegem MCJ (2013) Nutrient discharge from aquaculture operations in function of system design and production environment. Rev Aquac 5:158–171

    Article  Google Scholar 

  • Wang G, Li D (2009) A fish disease diagnosis expert system using short message service. In: 2009 WRI International conference on communications and mobile computing, vol 3. IEEE, Piscataway, NJ, pp 299–303

    Chapter  Google Scholar 

  • Witten PE, Harris MP, Huysseune A, Winkler C (2017) Small teleost fish provide new insights into human skeletal diseases. In: Methods in cell biology, vol 138. Academic Press, Cambridge, MA, pp 321–346

    Google Scholar 

  • Woo PT, Bruno DW (2011) Fish diseases and disorders. Viral, bacterial and fungal infections, 2nd edn. CABI, Wallingford

    Book  Google Scholar 

  • Woo PT, Gregory DWB (eds) (2014) Diseases and disorders of finfish in cage culture. CABI, Wallingford

    Google Scholar 

  • Yu X, Jiang W, Shi Y, Ye H, Lin J (2019) Applications of sequencing technology in clinical microbial infection. J Cell Mol Med 23(11):7143–7150

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors are thankful to ICAR-Central Inland Fisheries research Institute (ICAR-CIFRI) for ample help and support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V., Roy, S., Behera, B.K., Das, B.K. (2021). Disease Diagnostic Tools for Health Management in Aquaculture. In: Pandey, P.K., Parhi, J. (eds) Advances in Fisheries Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-3215-0_21

Download citation

Publish with us

Policies and ethics