Skip to main content

Methods for Direct Representation of Asymmetry

  • Chapter
  • First Online:
Methods for the Analysis of Asymmetric Proximity Data

Part of the book series: Behaviormetrics: Quantitative Approaches to Human Behavior ((BQAHB,volume 7))

  • 313 Accesses

Abstract

After a brief recall to the main aspects of the graphical representation of a rectangular matrix, two classes of methods to represent proximity matrices are reviewed: bilinear and distance-like methods. The main steps for the bilinear model estimation are presented by studying the properties of the Singular Value Decomposition of a proximity matrix. The principal concepts concerning the distance models for the analysis of symmetric proximity matrices are recalled, then some distance-like methods dealing with the direct representation of the asymmetric proximities are presented. The chapter ends with two applications to real data and a software section to present some programs available for models estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gower, J. C., Lubbe, S., & Le Roux, N. (2011). Understanding biplots. Wiley.

    Book  Google Scholar 

  2. Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58(3), 453–467.

    Article  MathSciNet  Google Scholar 

  3. Greenacre, M. J. (2010). Biplots in practice. BBVA Foundation.

    Google Scholar 

  4. Okada, A., & Tsurumi, H. (2012). Asymmetric multidimensional scaling of brand switching among margarine brands. Behaviormetrika, 39, 111–126.

    Article  Google Scholar 

  5. Torgerson, W. S. (1952). Multidimensional scaling: I theory and method. Psychometrika, 17, 401–419.

    Article  MathSciNet  Google Scholar 

  6. Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53, 325–338.

    Article  MathSciNet  Google Scholar 

  7. Borg, I., & Groenen, P.J. F. (2005). Modern multidimensional scaling. Theory and applications. (2nd ed.). Springer.

    Google Scholar 

  8. Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 1–29.

    Article  MathSciNet  Google Scholar 

  9. Sammon, J. W. (1969). A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, C-18 (5), 401–409.

    Google Scholar 

  10. Takane, Y., Young, F. W., & de Leeuw, J. (1977). Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features. Psychometrika, 42, 7–67.

    Article  Google Scholar 

  11. Borg, I., Groenen, P. J. F., & Mair P. (2018) Applied Multidimensional Scaling and Unfolding (2nd edn.). Springer.

    Google Scholar 

  12. Kruskal, J. B., & Wish, M. (1978). Multidimensional scaling. Sage.

    Book  Google Scholar 

  13. Wagenaar, W. A., & Padmos, P. (1971). Quantitative interpretation of stages in Kruskal’s multidimensional scaling technique. British Journal of Mathematical and Statistical Psychology, 24, 101–110.

    Article  Google Scholar 

  14. Spence, I., & Young, F. W. (1978). Monte Carlo studies in nonmetric scaling. Psychometrika, 43, 115–117.

    Article  Google Scholar 

  15. Mair, P., Borg, I., & Rusch, T. (2016). Goodness-of-fit assessment in multidimensional scaling and unfolding. Multivariate Behavioral Research, 51, 772–789.

    Google Scholar 

  16. Borg, I., & Mair, P. (2017). The choice of initial configurations in multidimensional scaling: Local minima, fit, and interpretability. Austrian Journal of Statistics, 46, 19–32.

    Article  Google Scholar 

  17. Mair, P., Groenen, P. J. F., & De Leeuw, J. (2020). More on multidimensional scaling and unfolding in R: smacof version 2. https://cran.r-project.org/web/packages/smacof/vignettes/smacof.pdf

  18. Heiser, W. J., & de Leeuw, J. (1981). Multidimensional mapping of preference data. Mathématique et Sciences Humaines, 19(73), 39–96.

    MathSciNet  Google Scholar 

  19. Coombs, C. H. (1950). Psychological scaling without a unit of measurement. Psychological Review, 57, 148–158.

    Article  Google Scholar 

  20. Coombs, C. H. (1964). A theory of data. Wiley.

    Google Scholar 

  21. Kruskal, J. B. (1965). Analysis of factorial experiments by estimating monotone transformations of the data. Journal of the Royal Statistical Society Series B (methodological), 27, 251–263.

    Article  MathSciNet  Google Scholar 

  22. Kruskal, J. B., & Carroll, J. D. (1969). Geometrical models and badness-of-fit functions. In P. R. Krishnaiah (Ed.), Multivariate analysis (Vol. 2, pp. 639–671). Academic Press.

    Google Scholar 

  23. Busing, F. M. T. A., Groenen, P. J. F., & Heiser, W. J. (2005). Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation. Psychometrika, 70, 71–98.

    Article  MathSciNet  Google Scholar 

  24. Busing, F. M. T. A. (2010). Advances in multidimensional unfolding (PhD Thesis). Faculty of Social and Behavioural Sciences, Leiden University

    Google Scholar 

  25. Bove, G., & Rocci, R. (1999). Methods for asymmetric three-way scaling. In M. Vichi & O. Opitz (Eds.), Classification and data analysis. Theory and application (pp. 131–138). Springer.

    Google Scholar 

  26. Bove, G. (2014). Asymmetries in organizational structures. In D. Vicari, A. Okada, G. Ragozini, & C. Weihs (Eds.), Analysis and modeling of complex data in behavioral and social sciences (pp. 65–72). Springer-Verlag.

    Chapter  Google Scholar 

  27. Sagarra, M., Busing, F. M. T. A., Mar-Molinero, C., & Rialp, J. (2018). Assessing the asymmetric effects on branch rivalry of Spanish financial sector restructuring. Advances in Data Analysis and Classification, 12, 131–153.

    Article  MathSciNet  Google Scholar 

  28. Young, F. W. (1975). An asymmetric Euclidean model for multi-process asymmetric data. In Proceedings of the US-Japan Seminar on the Theory, Methods and Applications of Multidimensional Scaling and Related Techniques (pp. 79–88). University of California.

    Google Scholar 

  29. Young, F. W. (1987). Multidimensional scaling: History, theory, and applications. R. M. Hamer (Ed.). Lawrence Erlbaum Associates Inc.

    Google Scholar 

  30. Everitt, B. S., & Rabe-Hesketh, S. (1997). The analysis of proximity data. Arnold.

    MATH  Google Scholar 

  31. De Leeuw, J., & Heiser, W. J. (1982). Theory of multidimensional scaling. In P. R. Krishnaiah & L. N. Kanal (Eds.), Handbook of statistics (Vol. 2, pp. 285–316). North Holland.

    Google Scholar 

  32. Zielman, B., & Heiser, W. J. (1993). Analysis of asymmetry by a slide-vector. Psychometrika, 58, 101–114.

    Article  Google Scholar 

  33. European Commission. (2006). Eurobarometer: Europeans and their languages. Special Eurobarometer 243, Public Opinion Analysis sector of the European Commission, Brussels.

    Google Scholar 

  34. Krackhardt, D. (1987). Cognitive social structures. Social Networks, 9, 109–134.

    Article  MathSciNet  Google Scholar 

  35. Okada, A. (2011). Centrality of asymmetric social network: Singular value decomposition, conjoint measurement, and asymmetric multidimensional scaling. In S. Ingrassia, R. Rocci & M. Vichi (Eds.), New perspectives in statistical modelling and data analysis (pp. 219–227). Springer.

    Chapter  Google Scholar 

  36. Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and applications. Cambridge University Press.

    Book  Google Scholar 

  37. Verzani, J. (2011). Getting started with RStudio: An integrated development environment for R. O’Reilly Media.

    Google Scholar 

  38. IBM-SPSS. (2019). IBM-SPSS Categories 26. IBM Corp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Bove .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bove, G., Okada, A., Vicari, D. (2021). Methods for Direct Representation of Asymmetry. In: Methods for the Analysis of Asymmetric Proximity Data. Behaviormetrics: Quantitative Approaches to Human Behavior, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-16-3172-6_2

Download citation

Publish with us

Policies and ethics