Skip to main content

Abstract

In many disciplines such as psychology, sociology, marketing research, behavioural sciences, and so on, systems of relationships between pairs of entities in a set are frequently studied. Though many of these relationships are asymmetric in practice, asymmetry had been ignored for long time by methods of data analysis, with a few exceptions. A brief history of methods and procedures of Multidimensional Scaling (MDS) to deal with asymmetry in pairwise relationships data is provided in Saito & Yadohisa (2005, Sect. 4.1.2.). Here, only a few historical notes are recalled because of their relevance with respect to the methods of MDS and cluster analysis presented in the following chapters. The main types of asymmetric pairwise relationships are described, the definition of proximity and some related basic concepts are also presented. Finally, some examples of proximity data that will be analysed in the following chapters are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shepard, R. N. (1957). Stimulus and response generalization: A stochastic model relating generalization to distance in psychological space. Psychometrika, 22, 325–345.

    Article  MathSciNet  MATH  Google Scholar 

  2. Saito, T., & Yadohisa, H. (2005). Data analysis of asymmetric structures. Advanced approaches in computational statistics. Marcel Dekker.

    Google Scholar 

  3. Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  4. Carroll, J. D., & Arabie, P. (1980). Multidimensional scaling. Annual Review of Psychology, 31, 607–649.

    Article  Google Scholar 

  5. Young, F. W. (1975). An asymmetric Euclidean model for multi-process asymmetric data. In Proceedings of the US-Japan Seminar on the Theory, Methods and Applications of Multidimensional Scaling and Related Techniques (pp. 79–88). University of California.

    Google Scholar 

  6. Young, F. W. (1987). Multidimensional scaling: History, theory, and applications. R. M. Hamer (Ed.). Lawrence Erlbaum Associates Inc.

    Google Scholar 

  7. De Leeuw, J., & Heiser, W. J. (1982). Theory of multidimensional scaling. In P. R. Krishnaiah & L. N. Kanal (Eds.), Handbook of statistics (Vol. 2, pp. 285–316). North Holland.

    Google Scholar 

  8. Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–352.

    Article  Google Scholar 

  9. Tversky, A., & Gati, I. (1978). Studies of similarity. In E. Rosch, & B. Lloyd (Eds.), Cognition and categorization (pp. 79–98). Lawrence Erlbaum Associates Inc.

    Google Scholar 

  10. Krumhansl, C. L. (1978). Concerning the applicability of geometric models to similarity data: The interrelationship between similarity and spatial density. Psychological Review, 85, 445–463.

    Article  Google Scholar 

  11. Holman, E. W. (1979). Monotonic models for asymmetric proximities. Journal of Mathematical Psychology, 20, 1–15.

    Article  MATH  Google Scholar 

  12. Nosofsky, R. M. (1991). Stimulus bias, asymmetric similarity, and classification. Cognitive Psychology, 23, 94–140.

    Article  Google Scholar 

  13. Weeks, D. G., & Bentler, P. M. (1982). Restricted multidimensional scaling models for asymmetric proximities. Psychometrika, 47, 201–207.

    Article  Google Scholar 

  14. Wilderjans, T. F., Depril, D., & Van Mechelen, I. (2013). Additive biclustering: A comparison of one new and two existing ALS algorithms. Journal of Classification, 30, 56–74.

    Article  MathSciNet  MATH  Google Scholar 

  15. Levin, J., & Brown, M. (1979). Scaling a conditional proximity matrix to symmetry. Psychometrika, 44(2), 239–243.

    Article  Google Scholar 

  16. Bishop, Y. M., Fienberg, S. E., & Holland, P. (1975). Discrete multivariate analysis; Theory and practice. M.I.T: Press.

    MATH  Google Scholar 

  17. Harshman, R. A. (1978). Models for analysis of asymmetrical relationships among N objects or stimuli. Paper presented at the First Joint Meeting of the Psychometric Society and the Society for Mathematical Psychology. McMaster University.

    Google Scholar 

  18. Chino, N. (1978). A graphical technique for representing the asymmetric relationships between N objects. Behaviormetrika, 5, 23–40.

    Article  Google Scholar 

  19. Gower, J. C. (1977). The analysis of asymmetry and orthogonality. In J. R. Barra et al. (Eds.), Recent developments in statistics (pp. 109–123). North Holland.

    Google Scholar 

  20. Constantine, A. G., & Gower, J. C. (1978). Graphical representation of asymmetric matrices. Applied Statistics, 3, 297–304.

    Article  MATH  Google Scholar 

  21. Cox, T. F., & Cox, M. A. A. (2001). Multidimensional scaling. CRC/Chapman and Hall.

    MATH  Google Scholar 

  22. Kruskal, J. B., & Carmone, F. J. Jr. (1971). How to use M-D-SCAL (Version 5M) and other useful information. Multidimensional scaling program package of Bell Laboratories, Bell Laboratories.

    Google Scholar 

  23. Gower, J. C. (2018). Skew symmetry in retrospect. Advances in Data Analysis and Classification, 12, 33–41.

    Article  MathSciNet  MATH  Google Scholar 

  24. Tobler, W. R. (1976). Spatial interaction patterns. Journal of Environmental Systems, 6, 271–301.

    Article  Google Scholar 

  25. Tobler, W. R. (1979). Estimation of attractivities from interactions. Environment and Planning A, 11(2), 121–127.

    Article  Google Scholar 

  26. Constantine, A. G., & Gower, J. C. (1982). Models for the analysis of interregional migration. Environment and Planning (A), 14, 477–497.

    Article  Google Scholar 

  27. Escoufier, Y., & Grorud, A. (1980). Analyse factorielle des matrices carrees non symetriques, In E. Diday et al. (Eds.), Data analysis and informatics (pp. 263–276). North-Holland

    Google Scholar 

  28. Chino, N., & Shiraiwa, K. (1993). Geometrical structures of some non-distance models for asymmetric MDS. Behaviormetrika, 20, 35–47.

    Article  Google Scholar 

  29. Lance, G. N., & Williams, W. T. (1966). A generalized sorting strategy for computer classifications. Nature, 212, 218.

    Article  Google Scholar 

  30. Lance, G. N., & Williams, W. T. (1967). A general theory of classificatory sorting strategies: 1. Hierarchical systems. The Computer Journal, 9, 373–380.

    Google Scholar 

  31. Hubert, L. J. (1973). Min and max hierarchical clustering using asymmetric similarity measures. Psychometrika, 38, 63–72.

    Article  MATH  Google Scholar 

  32. Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32, 241–254.

    Article  MATH  Google Scholar 

  33. Fujiwara, H. (1980). Hitaisho sokudo to toshitsusei keisuu o mochiita kurasuta bunsekiho [Methods for cluster analysis using asymmetric measures and homogeneity coefficient]. Kodo Keiryogaku [Japanese Journal of Behaviormetrics], 7(2), 12–21. (in Japanese).

    Article  Google Scholar 

  34. Okada, A., & Iwamoto, T. (1995). Hitaisho kurasuta bunnsekihou niyoru daigakushinngaku niokeru todoufukennkann no kanren no bunseki [An asymmetric cluster analysis study on university enrolment flow among Japanese prefectures]. Riron to Houhou [Sociological Theory and Methods], 10, 1–13 (in Japanese).

    Google Scholar 

  35. Okada, A., & Iwamoto, T. (1996). University enrollment flow among the Japanese prefectures: A comparison before and after the Joint First Stage Achievement Test by asymmetric cluster analysis. Behaviormetrika, 23, 169–185.

    Article  Google Scholar 

  36. Yadohisa, H. (2002). Formulation of asymmetric agglomerative hierarchical clustering and graphical representation of its result. Bulletin of The Computational Statistics Society of Japan, 15, 309–316. (in Japanese).

    Google Scholar 

  37. Takeuchi, A., Saito, T., & Yadohisa, H. (2007). Asymmetric agglomerative hierarchical clustering algorithms and their evaluations. Journal of Classification, 24, 123–143.

    Article  MathSciNet  MATH  Google Scholar 

  38. Ozawa, K. (1983). Classic: A hierarchical clustering algorithm based on asymmetric similarities. Pattern Recognition, 16, 201–211.

    Article  MATH  Google Scholar 

  39. Brossier, G. (1982). Classification hiérarchique à partir de matrices carrées non symétriques. Statistique et Analyse des Données, 7, 22–40.

    MathSciNet  MATH  Google Scholar 

  40. Olszewski, D. (2011). Asymmetric k-means algorithm. In A. Dovnikar, U. Lotrič, & B. Ster (Eds.), International conference on adaptive and natural computing algorithms (ICANNGA 2011) part II, Lecture notes in computer science (Vol. 6594, pp. 1–10). Springer.

    Chapter  Google Scholar 

  41. Olszewski, D. (2012). K-means clustering of asymmetric data. In E. Corchado et al. (Eds.), Hybrid artificial intelligent systems 2012, part I, Lecture notes in computer science (Vol. 7208, pp. 243–254). Springer.

    Google Scholar 

  42. Olszewski, D., & Šter, B. (2014). Asymmetric clustering using the alpha-beta divergence. Pattern Recognition, 47, 2031–2041.

    Article  Google Scholar 

  43. Okada, A., & Yokoyama, S. (2015). Asymmetric CLUster analysis based on SKEW-Symmetry: ACLUSKEW. In I. Morlini, T. Minerva, & M. Vichi (Eds.), Advances in statistical models for data analysis. Studies in classification, data analysis, and knowledge organization (pp. 191–199). Springer.

    Google Scholar 

  44. Okada, A., & Imaizumi, T. (2007). Multidimensional scaling of asymmetric proximities with a dominance point. In D. Baier et al. (Eds.), Advances in data analysis (pp. 307–318). Springer.

    Chapter  Google Scholar 

  45. Vicari, D. (2014). Classification of asymmetric proximity data. Journal of Classification, 31, 386–420.

    Article  MathSciNet  MATH  Google Scholar 

  46. Vicari, D. (2018). CLUSKEXT: CLUstering model for SKew-symmetric data including EXTernal information. Advances in Data Analysis and Classification, 12, 43–64.

    Article  MathSciNet  MATH  Google Scholar 

  47. Vicari, D. (2020). Modelling asymmetric exchanges between clusters. In T. Imaizumi A. Nakayama & S. Yokoyama (Eds.), Advanced studies in behaviormetrics and data science. Behaviormetrics: Quantitative approaches to human behavior (pp. 297–313). Springer Nature.

    Google Scholar 

  48. Kruskal, J. B., & Wish, M. (1978). Multidimensional scaling. Sage.

    Book  Google Scholar 

  49. Borg, I., & Groenen, P. J. F. (2005). Modern multidimensional scaling. Theory and applications (2nd edn.). Springer.

    Google Scholar 

  50. Takane, Y., Jung, S., & Oshima-Takane, Y. (2009). Multidimensional scaling. In R. E. Millsap & A. Maydeu-Olivares (Eds.), The Sage handbook of quantitative methods in psychology (pp. 219–242). Sage Publications.

    Google Scholar 

  51. Everitt, B. S., & Rabe-Hesketh, S. (1997). The analysis of proximity data. Arnold.

    MATH  Google Scholar 

  52. Gower, J. C., & Legendre, P. (1986). Metric and Euclidean properties of dissimilarity coefficients. Journal of Classification, 3, 5–48.

    Google Scholar 

  53. Gower, J. C. (2008). Asymmetry analysis: The place of models. In K. Shigemasu & A. Okada (Eds.), New trends in psychometrics (pp. 79–86). Universal Academy Press.

    Google Scholar 

  54. Hartigan, J. A. (1967). Representation of similarity matrices by trees. Journal of the American Statistical Association, 62, 1140–1158

    Google Scholar 

  55. Chaturvedi, A., & Carroll, J. D. (2006). CLUSCALE (“CLUstering and multidimensional SCAL[E]ing”): A three-way hybrid model incorporating overlapping clustering and multidimensional scaling structure. Journal of Classification, 23, 269–299.

    Article  MathSciNet  MATH  Google Scholar 

  56. Shepard, R. N. (1974). Representation of structure in similarity data: Problems and prospects. Psychometrika, 39, 373–421.

    Article  MathSciNet  MATH  Google Scholar 

  57. Kendall, M. G. (1970). Rank correlation methods (4th ed.). Griffin.

    MATH  Google Scholar 

  58. David, H. A. (1988). The method of paired comparisons. Griffin.

    MATH  Google Scholar 

  59. Zielman, B., & Heiser, W. J. (1993). Analysis of asymmetry by a slide-vector. Psychometrika, 58, 101–114.

    Article  MATH  Google Scholar 

  60. Groenen, P. J. F., & Heiser, W. J. (1996). The tunneling method for global optimization in multidimensional scaling. Psychometrika, 61(3), 529–550.

    Article  MATH  Google Scholar 

  61. Tobler, W. R., & Wineberg, S. (1971). A Cappadocian speculation. Nature, 231(5297), 39–42.

    Article  Google Scholar 

  62. Mair, P., Groenen, P. J. F., & De Leeuw, J. (2020). More on multidimensional scaling and unfolding in R: Smacof Version 2, https://cran.r-project.org/web/packages/smacof/vignettes/smacof.pdf

  63. Young, G., & Householder, A. S. (1938). Discussion of a set of points in terms of their mutual distances. Psychometrika, 3, 19–22.

    Article  MATH  Google Scholar 

  64. Torgerson, W. S. (1952). Multidimensional scaling: I. Theory and method. Psychometrika, 17, 401–419.

    Article  MathSciNet  MATH  Google Scholar 

  65. Harshmann, R. A., Green, P. E., Wind, Y., & Lundy, M. E. (1982). A model for the analysis of asymmetric data in marketing research. Marketing Science, 1, 204–242.

    Article  Google Scholar 

  66. DeSarbo, W. S. (1982). GENNCLUS: New models for general nonhierarchical clustering analysis. Psychometrika, 47(4), 449–475.

    Article  MathSciNet  MATH  Google Scholar 

  67. Rocci, R., & Bove, G. (2002). Rotation techniques in asymmetric multidimensional scaling. Journal of Computational and Graphical Statistics, 11, 405–419.

    Article  MathSciNet  Google Scholar 

  68. Heiser, W. J., & Busing, F. M. T. A. (2004). Multidimensional scaling and unfolding of symmetric and asymmetric proximity relations. In D. Kaplan (Ed.), The Sage Handbook of Quantitative Methodology for the Social Sciences (pp. 25–48). Sage Publications.

    Google Scholar 

  69. Caussinus, H., & de Falguerolles, A. (1987). Tableaux carrés: Modélisation et methods factorielles. Revue de Statistique Appliquée, 35, 35–52.

    Google Scholar 

  70. Krackhardt, D. (1987). Cognitive social structures. Social Networks, 9, 109–134.

    Article  MathSciNet  Google Scholar 

  71. Okada, A. (2011). Centrality of asymmetric social network: Singular value decomposition, conjoint measurement, and asymmetric multidimensional scaling. In S. Ingrassia, R. Rocci, & M.Vichi (Eds.), New perspectives in statistical modeling and data analysis (pp. 219–227). Springer.

    Chapter  Google Scholar 

  72. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press.

    Book  MATH  Google Scholar 

  73. Bove, G. (2014). Asymmetries in organizational structures. In D. Vicari, A. Okada, G. Ragozini, & C. Weihs (Eds.), Analysis and modeling of complex data in behavioral and social sciences (pp. 65–72). Springer-Verlag.

    Chapter  Google Scholar 

  74. Cailliez, F., & Pages, J. P. (1976). Introduction à l’analyse des données. SMASH.

    Google Scholar 

  75. European Commission. (2006). Eurobarometer: Europeans and their languages. Special Eurobarometer 243, Public Opinion Analysis Sector of the European Commission, Brussels.

    Google Scholar 

  76. Seiyama, K., Naoi, A., Sato, Y., Tsuzuki, K., & Kojima, H. (1990). Gendai Nipponn no kaisoukouzou to sono suusei [Stratification structure of contemporary Japan and the trend]. In A. Naoi & K. Seiyama (Eds.), Gendai Nippon no Kaisoukouzou Vol. 1, Shakaikaisou no kouzou to katei [Social stratification in contemporary Japan, Vol. 1, Structure and process of social stratification]. Tokyo University Press (pp. 15–50).

    Google Scholar 

  77. Okada, A., & Imaizumi, T. (1997). Asymmetric multidimensional scaling of two-mode three-way proximities. Journal of Classification, 14, 195–224.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Bove .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bove, G., Okada, A., Vicari, D. (2021). Introduction. In: Methods for the Analysis of Asymmetric Proximity Data. Behaviormetrics: Quantitative Approaches to Human Behavior, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-16-3172-6_1

Download citation

Publish with us

Policies and ethics