Skip to main content

New Method of GNSS-R Wind Speed Retrieval Based on Empirical Orthogonal Function

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC 2021) Proceedings

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 772))

  • 8357 Accesses

Abstract

The geophysical model function (GMF) and the cumulative distribution function (CDF) are two main algorithms used for retrieving sea surface wind speed from GNSS-R observations. The difficulties in segment fitting and the complicity in parameter adjustment hinders the wide application of the GMF, while the wind speed retrieved by using the later renders a deviation of about –2 m/s when the wind speed is in the range of 0–3 m/s. This paper proposes a new algorithm based on the empirical orthogonal function (EOF) to retrieve wind speed from GNSS-R observations. Based on the EOF, two wind retrieval models are trained by using the delay doppler map average (DDMA) and the leading edge slope (LES) as the training set, respectively. In the training, the wind speed data (resolution: 30 km, 1 h) from European Centre for medium-range weather forecasts (ECMWF) reanalysis V5 (ERA5) are used as the ground truth data. The DDMA and LES are 80% of the resampled NASA’s cyclone global navigation satellite system (CYGNSS) and GNSS-R data of 2019 at an interval of 10 s. The final wind speeds are calculated from the two kinds of retrieval by a minimum variance (MV) criterion. At last, the test data set (20% of CYGNSS data) are used to evaluate the accuracy of the final wind speeds. The result shows that when the reference wind speeds are below 20 m/s, the mean bias and RMSE of the retrieved wind speeds are 0.026 m/s and 1.77 m/s when using the ERA5 wind speeds as the reference, which are 0.23 m/s and 1.67 m/s when using advanced scatterometer (ASCAT) wind speeds as the reference. This proves that the EOF algorithm has a good performance in retrieving sea surface wind speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martín-Neira, M.: A passive reflectometry and interferometry system (PARIS): application to ocean altimetry. ESA J. 17, 331–55 (1993)

    Google Scholar 

  2. Yang, D., Li, X., Wang, F.: Analysis of application status of GNSS reflected signal in ocean remote sensing. Radio Eng. 49(10), 843–848 (2019). (Ch)

    Google Scholar 

  3. Gao, F., Xu, T., Wang, N., et al.: A shipborne experiment using a dual-antenna reflectometry system for GPS/BDS code delay measurements. J. Geodesy 94(9), 88 (2020)

    Article  Google Scholar 

  4. Wu, X., Jin, S., Chang, L.: Monitoring bare soil freeze–thaw process using GPS-interferometric reflectometry: simulation and validation. Remote Sens. 10(2), 14 (2017)

    Google Scholar 

  5. Yan, Q., Huang, W.: Sea ice remote sensing using GNSS-R: a review. Remote Sens. 11(21), 2565 (2019)

    Article  Google Scholar 

  6. Jin, S., Zhang, Q., Qian, X.: New progress and application prospects of global navigation satelite system reflectometry (GNSS + R). Acta Geodaet. et Cartographica Sin. 46(10), 1389–1398 (2017). (Ch)

    Google Scholar 

  7. Pan, Y., Ren, C., Liang, Y., Zhang, Z., Shi, Y.: Inversion of surface vegetation water content based on GNSS-IR and MODIS data fusion. Satell. Navig. 1(1), 21 (2020)

    Article  Google Scholar 

  8. Zavorotny, V.U., Voronovich, A.G.: Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Trans. Geosci. Remote Sens. 38, 951–64 (2000)

    Article  Google Scholar 

  9. Clarizia, M.P., Gommenginger, C.P., Gleason, S.T., Srokosz, M.A., Galdi, C., Di, B.M.: Analysis of GNSS-R delay-Doppler maps from the UK-DMC satellite over the ocean. Geophys. Res. Lett. 36, L02608 (2009)

    Article  Google Scholar 

  10. Foti, G., Gommenginger, C., Jales, P., et al.: Spaceborne GNSS reflectometry for ocean winds: first results from the UK TechDemoSat-1 mission. Geophys. Res. Lett. 42(13), 5435–41 (2015)

    Article  Google Scholar 

  11. Ruf, C.S., Atlas, R., Chang, P.S., Clarizia, M.P., Garrison, J.L., Gleason, S., et al.: New ocean winds satellite mission to probe hurricanes and tropical convection. Bull. Am. Meteorol. Soc. 97(3), 385–95 (2016)

    Article  Google Scholar 

  12. Jing, C., Niu, X., Duan, C., Lu, F., Di, G., Yang, X.: Sea surface wind speed retrieval from the first chinese GNSS-R mission: technique and preliminary results. Remote Sens. 11(24), 3013 (2019)

    Article  Google Scholar 

  13. Clarizia, M.P., Ruf, C.S., Jales, P., Gommenginger, C.: Spaceborne GNSS-R minimum variance wind speed estimator. IEEE Trans. Geosci. Remote Sen. 52(11), 6829–43 (2014)

    Article  Google Scholar 

  14. Dong, Z., Jin, S.: Evaluation of spaceborne GNSS-R retrieved ocean surface wind speed with multiple datasets. Remote Sens. 11(23), 2747 (2019)

    Article  Google Scholar 

  15. Bu, J., Yu, K., Zhu, Y., Qian, N., Chang, J.: Developing and testing models for sea surface wind speed estimation with GNSS-R delay doppler maps and delay waveforms. Remote Sens. 12(22), 3760 (2020)

    Google Scholar 

  16. Clarizia, M.P., Ruf, C.S.: Statistical derivation of wind speeds from CYGNSS data. IEEE Trans. Geosci. Remote Sens. 58(6), 3955–64 (2020)

    Article  Google Scholar 

  17. Liu, Y., Collett, I., Morton, Y.J.: Application of neural network to GNSS-R wind speed retrieval. IEEE Trans. Geosci. Remote Sens. 57(12), 9756–66 (2019)

    Article  Google Scholar 

  18. Sparnocchia, S., Pinardi, N., Demirov, E.: Multivariate Empirical Orthogonal Function analysis of the upper thermocline structure of the Mediterranean Sea from observations and model simulations. Ann. Geophys. 21(1), 167–87 (2003)

    Article  Google Scholar 

  19. Clarizia, M.P., Ruf, C.S.: Wind speed retrieval algorithm for the cyclone global navigation satellite system (CYGNSS) mission. IEEE Trans. Geosci. Remote Sens. 54(8), 4419–32 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

The research is jointly financially supported by the National Key Research and Development Program of China (No. 2016YFB0501405) and General Program of National Natural Science Foundation of China (No. 11973073). Thanks to the Jet Propulsion Laboratory (JPL) and the European Centre for Medium-Range Weather Forecasts (ECMWF) for the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanling Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J., Chen, Y., Guo, P., Wang, X., Hu, X., Wu, M. (2021). New Method of GNSS-R Wind Speed Retrieval Based on Empirical Orthogonal Function. In: Yang, C., Xie, J. (eds) China Satellite Navigation Conference (CSNC 2021) Proceedings. Lecture Notes in Electrical Engineering, vol 772. Springer, Singapore. https://doi.org/10.1007/978-981-16-3138-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3138-2_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3137-5

  • Online ISBN: 978-981-16-3138-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics