Skip to main content

Voice Analysis for Diagnosis and Monitoring Parkinson’s Disease

Part of the Series in BioEngineering book series (SERBIOENG)

Abstract

Parkinson’s disease (PD) has complex and multi-symptoms, making it challenging to detect early-stage disease and to monitor the established patients. This also makes it challenging to design the protocol for conducting clinical trials to establish new medication and treatment to better support people with PD.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-3056-9_8
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-3056-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1

References

  1. Rusz, J., Hlavnic, J., Tykalová, T., Bušková, J., Ulmanová, O., Ružicka, E., Šonka, K.: Quantitative assessment of motor speech abnormalities in idiopathic rapid eye movement sleep behaviour disorder. Sleep Med. 19, 141–147 (2016)

    CrossRef  Google Scholar 

  2. Parisi, L., RaviChandran, N., Manaog, M.L.: Feature-driven machine learning to improve early diagnosis of Parkinson’s disease. Expert Syst. Appl. 110, 182–190 (2018)

    CrossRef  Google Scholar 

  3. Ogden, R.: An Introduction to English Phonetics. Edinburgh University Press, Edinburgh (2009)

    Google Scholar 

  4. Vaiciukynas, E., Verikas, A., Gelzinis, A., Bacauskiene, M.: Detecting Parkinson’s disease from sustained phonation and speech signals. PLoS ONE 12(10), 1–16 (2017)

    CrossRef  Google Scholar 

  5. Moro-velázquez, L., Gómez-garcía, J.A., Godino-llorente, J.I., Villalba, J., Orozco-arroyave, J.R., Dehak, N.: Analysis of speaker recognition methodologies and the influence of kinetic changes to automatically detect Parkinson’s Disease. Appl. Soft Comput. J. 62, 649–666 (2018)

    CrossRef  Google Scholar 

  6. Rusz, J., Cmejla, R., Tykalova, T., Ruzickova, H., Klempir, J., Majerova, V., Picmausova, J., Roth, J., Ruzicka, E.: Imprecise vowel articulation as a potential early marker of Parkinson’s disease : effect of speaking task. J. Acoust. Soc. Am. 134(3), 2171–2181 (2013)

    CrossRef  Google Scholar 

  7. Viswanathan, R., Arjunan, S.P., Bingham, A., Jelfs, B., Kempster, P., Raghav, S., Kumar, D.K.: Complexity measures of voice recordings as a discriminative tool for Parkinson’s Disease. Biosensors (Basel) 10(1) (2019)

    Google Scholar 

  8. Khojasteh, P., Viswanatha, R., Aliahmad, B., Ragnav, S., Zham, P., Kumar, D.: Parkinson’s Disease diagnosis based on multivariate deep features of speech signal, 187–190 (2018)

    Google Scholar 

  9. Ali, L., Zhu, C.E., Zhang, Z., Liu, Y.: Automated detection of Parkinson’s Disease based on multiple types of sustained phonations using linear discriminant analysis and genetically optimized neural network. IEEE J. Transl. Eng. Health Med. 7(October), 1–10 (2019)

    CrossRef  Google Scholar 

  10. Sakar, B.E., Isenkul, M.E., Sakar, C.O., Sertbas, A., Gurgen, F., Delil, S., Apaydin, H., Kursun, O.: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J. Biomed. Health Inform. 17(4), 828–834 (2013)

    CrossRef  Google Scholar 

  11. Bocklet, T., Nöth, E., Stemmer, G., Ruzickova, H., Rusz, J.: Detection of persons with Parkinson’s disease by acoustic, vocal, and prosodic analysis, 478–483

    Google Scholar 

  12. Tykalova, T., Rusz, J., Cmelja, R., Klempir, J., Ruzickkova, H., Roth, J., Ruzicka, E.: Effect of dopaminergic medication on speech dysfluency in Parkinson’s disease : a longitudinal study. J. Neural Transm. 122(8) (2015)

    Google Scholar 

  13. Behroozi, M., Sami, A.: A multiple-classifier framework for Parkinson’s Disease detection based on various vocal tests. Int. J. Telemed. Appl. 2016(11), 1–9 (2016)

    Google Scholar 

  14. Tsanas, A., Little, M.A., McSharry, P.E., Ramig, L.O.: Accurate telemonitoring of Parkinson’s disease progression by noninvasive speech tests. IEEE Trans. Biomed. Eng. 57(4), 884–893 (2010)

    CrossRef  Google Scholar 

  15. Perez, C.J., Roca, Y.C., Naranjo, L., Martin, J.: Diagnosis and tracking of Parkinson’s Disease by using automatically extracted acoustic features. J. Alzheimer’s Dis. Parkinsonism 6(5) (2016)

    Google Scholar 

  16. Khan, T., Westin, J., Dougherty, M.: Cepstral separation difference: A novel approach for speech impairment quantification in Parkinson’s disease. Biocybern. Biomed. Eng. 34(1), 25–34 (2014)

    CrossRef  Google Scholar 

  17. Pieterman, M., Adams, S., Jog, M.: Method of Levodopa response calculation determines strength of association with clinical factors in Parkinson disease. Front. Neurol. 9(May) (2018)

    Google Scholar 

  18. Brabenec, L., Mekyska, J., Galaz, Z., Rektorova, I.: Speech disorders in Parkinson’s disease: early diagnostics and effects of medication and brain stimulation. J. Neural Transm. 124(3), 303–334 (2017)

    CrossRef  Google Scholar 

  19. Rusz, J., Cmejla, R., Ruzickova, H., Ruzicka, E.: Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson’s disease. J. Acoust. Soc. Am. 129(1), 350–367 (2011)

    CrossRef  Google Scholar 

  20. Elfmarkova, N., Gajdos, M., Mrackova, M., Mekyska, J., Mikl, M., Rektorova, I.: Impact of Parkinson’s disease and levodopa on resting state functional connectivity related to speech prosody control. Parkinsonism Relat. Disord. 22(1), S52–5 (2016)

    Google Scholar 

  21. Cushnie-Sparrow, D., Adams, S., Abeyesekera, A., Pieterman, M., Gilmore, G., Jog, M.: Voice quality severity and responsiveness to levodopa in Parkinson’s disease. J. Commun. Disord. 76(July), 1–10 (2018)

    Google Scholar 

  22. Skodda, S., Visser, W., Schlegel, U.: Short-and long-term dopaminergic effects on dysarthria in early Parkinson’s disease. Mov. Disord. 117, 197–205 (2010)

    Google Scholar 

  23. Ho, A.K., Bradshaw, J.L., Iansek, R.: For better or worse: the effect of levodopa on speech in Parkinson’s Disease. Mov. Disord. 23(4), 574–580 (2008)

    CrossRef  Google Scholar 

  24. Sanabria, J., Ruiz, P.G., Gutierrez, R., Marquez, F., Escobar, P., Gentil, M., Cenjor, C.: The effect of levodopa on vocal function in Parkinson’s Disease. Clin. Neuropharmacol. 24(2), 99–102 (2001)

    CrossRef  Google Scholar 

  25. Goberman, A., Coelho, C., Robb, M.: Phonatory characteristics of Parkinsonian speech before and after morning medication : the ON and OFF states. J. Commun. Disord. 35, 217–239 (2002)

    CrossRef  Google Scholar 

  26. Fabbri, M., Guimaraes, I., Cardoso, R., Coelho, M., Guedes, L.C., Rosa, M.M., Godinho, C., Abreu, D., Goncalves, N., Antonini, A., Ferreira, J.J.: Speech and voice response to a levodopa challenge in late-stage Parkinson’s Disease. Front Neurol 8(8), 432 (2017)

    CrossRef  Google Scholar 

  27. De Letter, M., Van Borsel, J., Boon, P., De Bodt, M., Dhooge, I., Santens, P.: Sequential changes in motor speech across a levodopa cycle in advanced Parkinson’s disease. Int J Speech Lang Pathol 12(5), 405–413 (2010)

    CrossRef  Google Scholar 

  28. Santos, L.L., Reis, L.O., Bassi, I., Guzella, C., Cardoso, F., Reis, C., Gama, A.C.: Acoustic and hearing-perceptual voice analysis in individuals with idiopathic Parkinson’s disease in “on” and “off” stages. Arq. Neuropsiquiatr. 68(5), 706–711 (2010)

    CrossRef  Google Scholar 

  29. Pah, N.D., Motin, M.A., Kempster, P., Kumar, D.K.,: Detecting effect of levodopa in Parkinson’s disease patients using different sustained phonemes. IEEE J. Transl. Eng. Health Med. (Accepted) (2021)

    Google Scholar 

  30. Hughes, A.J., Daniel, S.E., Kilford, L., Lees, A.J.: Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55(3), 181–184 (1992)

    CrossRef  Google Scholar 

  31. Kempster, P.A., Sullivan, S.S.O., Holton, J.L., Revesz, T., Lees, A.J.: Relationships between age and late progression of Parkinson’s disease: a clinico-pathological study. Brain 133(6), 1755–1762 (2010)

    CrossRef  Google Scholar 

  32. Goetz, C.G., Tilley, B.C., Shaftman, S.R., Stebbins, G.T., Fahn, S., Martinez-martin, P., Poewe, W., Sampaio, C., Stern, M.B., Dodel, R., Dubois, B., Holloway, R., Jankovic, J., Kulisevsky, J., Lang, A.E., Lees, A., Leurgans, S., Lewitt, P.A., Nyenhuis, D., Olanow, C.W., Rascol, O., Schrag, A., Teresi, J.A., Hilten, J.J.V., Lapelle, N.: Movement disorder society-sponsored revision of the unified Parkinson’s Disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 23(15), 2129–2170 (2008)

    CrossRef  Google Scholar 

  33. Sweet, L., Adel, M.V., Metcalf, V., Wright, L., Harley, A.: The Montreal Cognitive Assessment (MoCA) in geriatric rehabilitation: Psychometric properties and association with rehabilitation outcomes. Int. Psychoger. (2011)

    Google Scholar 

  34. Tomlinson, C.L., Stowe, R., Patel, S., Rick, C., Gray, R., Clarke, C.E.: Systematic review of levodopa dose equivalency reporting in Parkinson’s Disease. Mov. Disord. 25(15), 2649–2685 (2010)

    CrossRef  Google Scholar 

  35. Viswanathan, R., Arjunan, S.P., Bingham, A., Jelfs, B.: Complexity measures of voice recordings as a discriminative tool for Parkinson’s Disease. Biosensors 10(1) (2019)

    Google Scholar 

  36. Boersma, P., Van Heuven, V.: Speak and unSpeak with PRAAT. Glot Int. 5(9/10), 341–347 (2001)

    Google Scholar 

  37. Jäntschi, L., Bolboacă, S.D.: Computation of probability associated with anderson-darling statistic. Mathematics 6(88), 1–16 (2018)

    MATH  Google Scholar 

  38. Hamel, L.: Knowledge Discovery with Support Vector Machines. John Wiley & Sons, New Jersey (2009)

    CrossRef  Google Scholar 

  39. Whalen, D.H., Kang, A.M., Magen, H.S., Fulbright, R.K., Gore, J.C.: Predicting midsagittal pharynx shape from tongue position during vowel production. J. Speech Lang. Hear. Res. 42, 592–603 (1999)

    CrossRef  Google Scholar 

  40. Nonnekes, J., Timmer, M.H.M., Vries, N.M.D., Rascol, O.: Unmasking levodopa resistance in Parkinson’s Disease. Mov. Disord. 31(11), 1–8 (2016)

    CrossRef  Google Scholar 

  41. Ling, H., Massey, L.A., Lees, A.J., Brown, P., Day, B.L.: Hypokinesia without decrement distinguishes progressive supranuclear palsy from Parkinson’s disease. BRAIN (2012)

    Google Scholar 

  42. Skorvanek, M., Goldman, J.G., Jahanshahi, M., Marras, C.: Global scales for cognitive screening in Parkinson’s Disease: critique and recommendations organization and review process. Mov. Disord. 33(2) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nemuel D. Pah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Pah, N.D., Motin, M.A., Kumar, D.K. (2022). Voice Analysis for Diagnosis and Monitoring Parkinson’s Disease. In: Arjunan, S.P., Kumar, D.K. (eds) Techniques for Assessment of Parkinsonism for Diagnosis and Rehabilitation. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-3056-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3056-9_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3055-2

  • Online ISBN: 978-981-16-3056-9

  • eBook Packages: EngineeringEngineering (R0)