Skip to main content

Integration of Machine Learning and IoT in Healthcare Domain

  • Chapter
  • First Online:
Hybrid Artificial Intelligence and IoT in Healthcare

Abstract

Recent advancement in technology has been fruitful in the unification of Internet of things and machine learning in numerous domains. While IoT is involved in aggregation of data and resources, data analysis, expansion of data, learning and taking decision action on input data is taken care of by machine learning approach. The combination of these two technologies can be of great help in clinical sector in generation of a receptive and interrelated environment, thereby providing various services to healthcare staffs and patients. IoT devices are based on developing smart applications for medical usability like wearable modules, smart capsules, and sensory-based units to assist medical personnel in gathering data. Models based on machine learning are used to analyze and detect several variations in health status of a patient, suggest diagnosis methods and alternatives, thereby improving patient’s health outcome. This chapter discusses the role of machine learning as well as IoT in healthcare domain. Feasible and ongoing vital applications of both machine learning and IoT are highlighted. A framework for medical IoT along with possible solutions for medical IoT is presented. Future trends related to the integration of these two approaches are pointed out. Later an intelligent and smart prototype model for disease identification is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roy, G., Bhoi, A. K., & Bhaumik, S. (2021). A comparative approach for MI-based EEG signals classification using energy, Power and Entropy. IRBM.

    Google Scholar 

  2. Nayak, S. R., Sivakumar, S., Bhoi, A. K., Chae, G. S., & Mallick, P. K. (2021). Mixed-mode database miner classifier: Parallel computation of graphical processing unit mining. The International Journal of Electrical Engineering & Education, 0020720920988494.

    Google Scholar 

  3. Pramanik, M., Pradhan, R., Nandy, P., Bhoi, A. K., & Barsocchi, P. (2021). Machine learning methods with decision forests for Parkinson’s detection. Applied Sciences, 11(2), 581.

    Article  Google Scholar 

  4. Panigrahi, R., Pramanik, M., Chakraborty, U. K., & Bhoi, A. K. (2020). Survivability prediction of patients suffering hepatocellular carcinoma using diverse classifier ensemble of grafted decision tree. International Journal of Computer Applications in Technology, 64(4), 349–360.

    Article  Google Scholar 

  5. Bhatt, T. V., Patel, R. K., Chitara, H. B., Marques, G., & Bhoi, A. K. (2020). Fuzzy logic system for diabetic eye morbidity prediction. International Journal of Computer Applications in Technology, 64(4), 339–348.

    Article  Google Scholar 

  6. Yadav, A., Kumar Singh, V., Kumar Bhoi, A., Marques, G., Garcia-Zapirain, B., & de la Torre Díez, I. (2020). Wireless body area networks: UWB wearable textile antenna for telemedicine and mobile health systems. Micromachines, 11(6), 558.

    Google Scholar 

  7. Marques, G., Bhoi, A. K., Albuquerque, V. H. C. & de, K. S., H. (Eds.) (2021). IoT in healthcare and ambient assisted living. Springer.

    Google Scholar 

  8. Bhoi, A. K., Mallick, P. K., Liu, C. M., & Balas, V. E (Eds.) (2021). Bio-inspired neurocomputing. Springer.

    Google Scholar 

  9. Bhoi, A. K., Sherpa, K. S., & Khandelwal, B. (2018). Arrhythmia and ischemia classification and clustering using QRS-ST-T (QT) analysis of electrocardiogram. Cluster Computing, 21(1), 1033–1044.

    Article  Google Scholar 

  10. Bhoi, A. K., & Sherpa, K. S. (2016). Statistical analysis of QRS-complex to evaluate the QR versus RS interval alteration during ischemia. Journal of Medical Imaging and Health Informatics, 6(1), 210–214.

    Article  Google Scholar 

  11. Marques, G., Miranda, N., Kumar Bhoi, A., Garcia-Zapirain, B., Hamrioui, S., & de la Torre Díez, I. (2020). Internet of things and enhanced living environments: Measuring and mapping air quality using cyber-physical systems and mobile computing technologies. Sensors, 20(3), 720.

    Google Scholar 

  12. Mosenia, A., Sur-Kolay, S., Raghunathan, A., & Jha, N. (2017). Wearable medical sensor-based system design IEEE transactions on MultiScale computing systems 2017 May 20.

    Google Scholar 

  13. Patil, P., & Mohsin, S. (2013). Fuzzy logic based health care system using wireless body area network. International Journal of Computer Applications, 1, 80(12)

    Google Scholar 

  14. Madhyan, E., & Kadam, M. (2014). A unique health care monitoring system using sensors and ZigBee technology. International Journal of Advanced Research in Computer Science and Software Engineering, 4(6).

    Google Scholar 

  15. Balasubramanian, A., Wang, J., & Prabhakaran, B. (2016 ). Discovering multidimensional motifs in physiological signals for personalized healthcare. IEEE Journal of Selected Topics in Signal Processing, 10(5), 832–841.

    Article  Google Scholar 

  16. Kim, Y., Lee, S., & Lee, S. (2016). Coexistence of ZigBee-based WBAN and WiFi for health tele monitoring systems. IEEE journal of biomedical and health informatics, 20(1), 222–230.

    Article  Google Scholar 

  17. Kakde S., et al. (2015). Implementation of health-care monitoring system using raspberry pi. IEEE ICCSP 2015 Conference, 2, 1083–1086.

    Google Scholar 

  18. Vazquez-Briseno, M., Navarro-Cota, C., Nieto-Hipólito, J., Jiménez-García, E., & Sanchez-Lopez, J. (2012). A proposal for using the internet of things concept to increase children’s health awareness. In Proceedings of the CONIELECOMP 2012, 22nd International Conference on Electrical Communications and Computers, Puebla, Mexico, 27–29 February 2012; pp. 168–172.

    Google Scholar 

  19. Vilallonga, R., Lecube, A.; Fort, J. M., Boleko, M. A., Hidalgo, M., & Armengol, M. (2013). Internet of Things and bariatric surgery follow-up: Comparative study of standard and IoT follow-up. Minimally Invasive Therapy and Allied Technologies, 22, 304–311. [PubMed]

    Google Scholar 

  20. Lee, B. M., & Ouyang, J. (2013). Application protocol adapted to health awareness for smart healthcare service. Advanced Science and Technology Letters, 43, 101–104.

    Google Scholar 

  21. Zaragozá, I., Guixeres, J., Alcañiz, M., Cebolla, A., Saiz, J., & Álvarez, J. (2013). Ubiquitous monitoring and assessment of childhood obesity. Personal and Ubiquitous Computing, 17, 1147–1157.

    Google Scholar 

  22. Lee, B. M., & Ouyang, J. (2014). Intelligent healthcare service by using collaborations between IoT personal health devices. International Journal of Bio-Science and Bio-Technology, 6, 155–164.

    Google Scholar 

  23. Hiremath, S., Yang, G., & Mankodiya, K. (2014). Wearable internet of things: Concept, architectural components and promises for person-centered healthcare. In Proceedings of the 4th International Conference on Wireless Mobile Communication and Healthcare—Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), Athens, Greece, 3–5 November, pp. 304–307.

    Google Scholar 

  24. Alloghani, M., Hussain, A., AI-Jumeily, D., Fergus, P., Abuelmatti, O., & Hamden, H. (2016). A Mobile Health Monitoring Application for Obesity Management and Control Using the Internet-of-Things. In Proceedings of the 2016 Sixth International Conference on Digital Information Processing and Communications (ICDIPC), Beirut, Lebanon, 21–23 April 2016, pp. 19–24.

    Google Scholar 

  25. Wibisono, G., & Astawa, I. G. B. (2016). Designing machine-to-machine (M2M) prototype system for weight loss program for obesity and overweight patients. In Proceedings of the 2016 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), Bangkok, Thailand, 25–27 January 2016, pp. 138–143.

    Google Scholar 

  26. Dobbins, C., Rawassizadeh, R., & Momeni, E. (2016). Detecting physical activity within life logs towards preventing obesity and aiding ambient assisted living. Neurocomputing, 230, 1–23.

    Google Scholar 

  27. Shin, S.-A., Lee, N.-Y., & Park, J.-H. (2017). Empirical study of the IoT-learning for obese patients that require personal training. In J. J. Park, Y. Pan, G. Yi, V. Loia (Eds.) Advances in Computer Science and Ubiquitous Computing (Vol. 421, pp. 1005–1012). Singapore: Springer.

    Google Scholar 

  28. Camara-Brito, J. M. (2016). Trends in wireless communications towards 5G networks—The influence of e-health and IoT applications. In Proceedings of the International Multidisciplinary Conference on Computer and Energy Science (SpliTech), Split, Croatia, 13–15 July 2016; pp. 1–7.

    Google Scholar 

  29. Mishra, S., Tripathy, H. K., & Mishra, B. K. (2018). Implementation of biologically motivated optimisation approach for tumour categorisation. International Journal of Computer Aided Engineering and Technology, 10(3), 244–256.

    Article  Google Scholar 

  30. Mishra, S., Chaudhury, P., Mishra, B. K., & Tripathy, H. K. (2016, March). An implementation of feature ranking using machine learning techniques for diabetes disease prediction. In Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies, pp. 1–3.

    Google Scholar 

  31. Ifrim, C., Pintilie, A.-M., Apostol, E., Dobre, C., & Pop, F. (2017). The art of advanced healthcare applications in big data and IoT systems. In C. X. Mavromoustakis, G. Mastorakis, C. Dobre, (Eds.) Advances in mobile cloud computing and big data in the 5G Era (Vol. 22, pp. 133–149). Berlin/Heidelberg, Germany: Springer.

    Google Scholar 

  32. Mishra, S., Mallick, P. K., Jena, L., & Chae, G. S. (2020). Optimization of skewed data using sampling-based pre-processing approach. Frontiers in Public Health, 8, 274. https://doi.org/10.3389/fpubh.2020.00274

    Article  Google Scholar 

  33. Ray, C., Tripathy, H. K., & Mishra S. (2019). A review on facial expression based behavioral analysis using computational technique for autistic disorder patients. In: M. Singh, P. Gupta, V. Tyagi, J. Flusser, T. Ören, R. Kashyap (Eds.) Advances in Computing and Data Sciences. ICACDS 2019. Communications in Computer and Information Science (Vol. 1046). Singapore: Springer https://doi.org/10.1007/978-981-13-9942-8_43

  34. Sahoo, S., Mishra, S., Mishra, B. K. K., & Mishra, M. (2018). Analysis and implementation of artificial bee colony optimization in constrained optimization problems. In Handbook of Research on Modeling, Analysis, and Application of Nature-Inspired Metaheuristic Algorithms (pp. 413–432). IGI Global.

    Google Scholar 

  35. Mishra, S., Tripathy, H. K., Mishra, B. K., & Mohapatra, S. K. (2018). A succinct analysis of applications and services provided by IoT. In Big Data Management and the Internet of Things for Improved Health Systems (pp. 142–162). IGI Global.

    Google Scholar 

  36. Mishra, S., Mallick, P. K., Tripathy, H. K., Bhoi, A. K., & González-Briones, A. (2020). Performance evaluation of a proposed machine learning model for chronic disease datasets using an integrated attribute evaluator and an improved decision tree classifier. Applied Sciences, 10(22), 8137.

    Article  Google Scholar 

  37. Mishra, S., Mallick, P. K., Tripathy, H. K., Jena, L., & Chae, G.-S. (2021). Stacked KNN with hard voting predictive approach to assist hiring process in IT organizations. The International Journal of Electrical Engineering & Education. https://doi.org/10.1177/0020720921989015

  38. Mishra, S., Mishra, B. K., Tripathy, H. K., & Dutta, A. (2020). Analysis of the role and scope of big data analytics with IoT in health care domain. In Handbook of Data Science Approaches for Biomedical Engineering (pp. 1–23). Academic Press.

    Google Scholar 

  39. Mishra, S., Dash, A., & Mishra, B. K. (2020). An insight of Internet of things applications in pharmaceutical domain. In Emergence of Pharmaceutical Industry Growth with Industrial IoT Approach (pp. 245–273). Academic Press.

    Google Scholar 

  40. Mishra, S., Tripathy, H. K., Mishra, B. K., & Sahoo, S. (2018). Usage and analysis of big data in E-health domain. In Big Data Management and the Internet of Things for Improved Health Systems (pp. 230–242). IGI Global.

    Google Scholar 

  41. Mishra, S., Tripathy, H. K., Mallick, P. K., Bhoi, A. K., & Barsocchi, P. (2020). EAGA-MLP—An enhanced and adaptive hybrid classification model for diabetes diagnosis. Sensors, 20(14), 4036.

    Article  Google Scholar 

  42. Mallick, P. K., Mishra, S., & Chae, G. S. (2020). Digital media news categorization using Bernoulli document model for web content convergence. Personal and Ubiquitous Computing. https://doi.org/10.1007/s00779-020-01461-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chattopadhyay, A., Mishra, S., González-Briones, A. (2021). Integration of Machine Learning and IoT in Healthcare Domain. In: Kumar Bhoi, A., Mallick, P.K., Narayana Mohanty, M., Albuquerque, V.H.C.d. (eds) Hybrid Artificial Intelligence and IoT in Healthcare. Intelligent Systems Reference Library, vol 209. Springer, Singapore. https://doi.org/10.1007/978-981-16-2972-3_11

Download citation

Publish with us

Policies and ethics