Skip to main content

Precision Medicine for Pancreatic Cancer and Cholangiocarcinoma

  • Chapter
  • First Online:
Management of Pancreatic Cancer and Cholangiocarcinoma
  • 625 Accesses

Abstract

Next-generation sequencing techniques, commercially available since 2006, have enabled cost- and time-effective sequencing of tumor DNA. Olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor, used as maintenance therapy following platinum-based chemotherapy, has been shown to improve progression-free survival in patients with metastatic pancreatic cancer and a germline BRCA1/2 mutation. KRAS mutations are predominant in pancreatic cancer. Although effective targeted therapy remains to be established, KRAS G12C inhibitors and the combined inhibition of MEK and autophagy are candidates for future treatment strategies. Regarding KRAS wild-type, BRAF-activating alterations, microsatellite instability, and kinase fusion genes, especially NRG1 fusion genes, are important genetic abnormalities of high interest as treatment targets.

Biliary tract cancer is an umbrella term that encompasses carcinoma of the extrahepatic bile ducts, carcinoma of the gallbladder, ampullary carcinoma, and intrahepatic cholangiocarcinoma, all of which are characterized by wide genomic variation associated with the different primary organs affected. For example, in intrahepatic cholangiocarcinoma, FGFR2 rearrangement and IDH1 mutation are important actionable driver genes successfully targeted in clinical trials. BRAF, HER2/neu, BRCA1/2, and overexpression of c-MET genes are among the other candidate targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akagi K, Oki E, Taniguchi H, Nakatani K, Aoki D, Kuwata T, et al. Nationwide large-scale investigation of microsatellite instability status in more than 18,000 patients with various advanced solid cancers. J Clin Oncol. 2020;38(4_suppl):803.

    Article  Google Scholar 

  2. Hu ZI, Shia J, Stadler ZK, Varghese AM, Capanu M, Salo-Mullen E, et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: challenges and recommendations. Clin Cancer Res. 2018;24(6):1326–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Okamura R, Boichard A, Kato S, Sicklick JK, Bazhenova L, Kurzrock R. Analysis of NTRK alterations in pan-cancer adult and pediatric malignancies: implications for NTRK-targeted therapeutics. JCO Precis Oncol. 2018;2:1–20.

    Google Scholar 

  4. Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020;38(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  5. Singhi AD, George B, Greenbowe JR, Chung J, Suh J, Maitra A, et al. Real-time targeted genome profile analysis of pancreatic ductal adenocarcinomas identifies genetic alterations that might be targeted with existing drugs or used as biomarkers. Gastroenterology. 2019;156(8):2242–53 e4.

    Article  CAS  PubMed  Google Scholar 

  6. Luchini C, Brosens LAA, Wood LD, Chatterjee D, Shin JI, Sciammarella C, et al. Comprehensive characterisation of pancreatic ductal adenocarcinoma with microsatellite instability: histology, molecular pathology and clinical implications. Gut. 2021;70(1):148–56.

    Article  CAS  PubMed  Google Scholar 

  7. Chmielecki J, Hutchinson KE, Frampton GM, Chalmers ZR, Johnson A, Shi C, et al. Comprehensive genomic profiling of pancreatic acinar cell carcinomas identifies recurrent RAF fusions and frequent inactivation of DNA repair genes. Cancer Discov. 2014;4(12):1398–405.

    Article  CAS  PubMed  Google Scholar 

  8. Klein AP, Brune KA, Petersen GM, Goggins M, Tersmette AC, Offerhaus GJ, et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res. 2004;64(7):2634–8.

    Article  CAS  PubMed  Google Scholar 

  9. Lal G, Liu G, Schmocker B, Kaurah P, Ozcelik H, Narod SA, et al. Inherited predisposition to pancreatic adenocarcinoma: role of family history and germ-line p16, BRCA1, and BRCA2 mutations. Cancer Res. 2000;60(2):409–16.

    CAS  PubMed  Google Scholar 

  10. Jones SN, Hruban RH, Kamiyama M, Borges M, Zhang X, Parsons DW, et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science. 2009;324(5924):217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roberts NJ, Jiao Y, Yu J, Kopelovich L, Petersen GM, Bondy ML, et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov. 2012;2(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  12. Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381(4):317–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lowery MA, Kelsen DP, Capanu M, Smith SC, Lee JW, Stadler ZK, et al. Phase II trial of veliparib in patients with previously treated BRCA-mutated pancreas ductal adenocarcinoma. Eur J Cancer. 2018;89:19–26.

    Article  CAS  PubMed  Google Scholar 

  14. Shroff RT, Hendifar A, McWilliams RR, Geva R, Epelbaum R, Rolfe L, et al. Rucaparib monotherapy in patients with pancreatic cancer and a known deleterious BRCA mutation. JCO Precis Oncol. 2018;2018

    Google Scholar 

  15. Van Cutsem E, van de Velde H, Karasek P, Oettle H, Vervenne WL, Szawlowski A, et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol. 2004;22(8):1430–8.

    Article  PubMed  CAS  Google Scholar 

  16. Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S, Tikunov AP, et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med. 2019;25(4):628–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kinsey CG, Camolotto SA, Boespflug AM, Guillen KP, Foth M, Truong A, et al. Protective autophagy elicited by RAF-->MEK-->ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat Med. 2019;25(4):620–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hong DS, Fakih MG, Strickler JH, Desai J, Durm GA, Shapiro GI, et al. KRAS(G12C) inhibition with sotorasib in advanced solid tumors. N Engl J Med. 2020;383(13):1207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hayashi H, Kohno T, Ueno H, Hiraoka N, Kondo S, Saito M, et al. Utility of assessing the number of mutated KRAS, CDKN2A, TP53, and SMAD4 genes using a targeted deep sequencing assay as a prognostic biomarker for pancreatic cancer. Pancreas. 2017;46(3):335–40.

    Article  CAS  PubMed  Google Scholar 

  20. Pishvaian MJ, Bender RJ, Halverson D, Rahib L, Hendifar AE, Mikhail S, et al. Molecular profiling of patients with pancreatic cancer: initial results from the know your tumor initiative. Clin Cancer Res. 2018;24(20):5018–27.

    Article  CAS  PubMed  Google Scholar 

  21. Heining C, Horak P, Uhrig S, Codo PL, Klink B, Hutter B, et al. NRG1 Fusions in KRAS wild-type pancreatic cancer. Cancer Discov. 2018;8(9):1087–95.

    Article  CAS  PubMed  Google Scholar 

  22. Jonna S, Feldman RA, Swensen J, Gatalica Z, Korn WM, Borghaei H, et al. Detection of NRG1 gene fusions in solid tumors. Clin Cancer Res. 2019;25(16):4966–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sia D, Hoshida Y, Villanueva A, Roayaie S, Ferrer J, Tabak B, et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology. 2013;144(4):829–40.

    Article  CAS  PubMed  Google Scholar 

  24. Arai Y, Totoki Y, Hosoda F, Shirota T, Hama N, Nakamura H, et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology. 2014;59(4):1427–34.

    Article  CAS  PubMed  Google Scholar 

  25. Graham RP, Barr Fritcher EG, Pestova E, Schulz J, Sitailo LA, Vasmatzis G, et al. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma. Hum Pathol. 2014;45(8):1630–8.

    Article  CAS  PubMed  Google Scholar 

  26. Ross JS, Wang K, Gay L, Al-Rohil R, Rand JV, Jones DM, et al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist. 2014;19(3):235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Javle M, Bekaii-Saab T, Jain A, Wang Y, Kelley RK, Wang K, et al. Biliary cancer: utility of next-generation sequencing for clinical management. Cancer. 2016;122(24):3838–47.

    Article  CAS  PubMed  Google Scholar 

  28. Maruki Y, Morizane C, Arai Y, Ikeda M, Ueno M, Ioka T, et al. Molecular detection and clinicopathological characteristics of advanced/recurrent biliary tract carcinomas harboring the FGFR2 rearrangements: a prospective observational study (PRELUDE Study). J Gastroenterol. 2021;56(3):250–60.

    Article  CAS  PubMed  Google Scholar 

  29. Gervaso L, Pellicori S, Fazio N. Ivosidenib for advanced IDH1-mutant cholangiocarcinoma. Lancet Oncol. 2020;21(8):e370.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu AX, Borger DR, Kim Y, Cosgrove D, Ejaz A, Alexandrescu S, et al. Genomic profiling of intrahepatic cholangiocarcinoma: refining prognosis and identifying therapeutic targets. Ann Surg Oncol. 2014;21(12):3827–34.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jiao Y, Pawlik TM, Anders RA, Selaru FM, Streppel MM, Lucas DJ, et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet. 2013;45(12):1470–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang P, Dong Q, Zhang C, Kuan PF, Liu Y, Jeck WR, et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene. 2013;32(25):3091–100.

    Article  CAS  PubMed  Google Scholar 

  33. Borger DR, Tanabe KK, Fan KC, Lopez HU, Fantin VR, Straley KS, et al. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist. 2012;17(1):72–9.

    Article  CAS  PubMed  Google Scholar 

  34. Churi CR, Shroff R, Wang Y, Rashid A, Kang HC, Weatherly J, et al. Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PLoS One. 2014;9(12):e115383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Javle M, Hainsworth J, Swanton C, Burris H, Kurzrock R, Sweeney C, et al. Pertuzumab + trastuzumab for HER2-positive metastatic biliary cancer: Preliminary data from MyPathway. J Clin Oncol. 2017;35(suppl 4S):abstract 402.

    Article  Google Scholar 

  36. Kopetz S, Grothey A, Yaeger R, Van Cutsem E, Desai J, Yoshino T, et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E–mutated colorectal cancer. N Engl J Med. 2019;381(17):1632–43.

    Article  CAS  PubMed  Google Scholar 

  37. Bekaii-Saab T, Phelps MA, Li X, Saji M, Goff L, Kauh JSW, et al. Multi-institutional phase II study of selumetinib in patients with metastatic biliary cancers. J Clin Oncol. 2011;29(17):2357–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wainberg ZA, Lassen UN, Elez E, Italiano A, Curigliano G, Braud FGD, et al. Efficacy and safety of dabrafenib (D) and trametinib (T) in patients (pts) with BRAF V600E–mutated biliary tract cancer (BTC): A cohort of the ROAR basket trial. J Clin Oncol. 2019;37(4_suppl):187.

    Article  Google Scholar 

  39. Golan T, Raitses-Gurevich M, Kelley RK, Bocobo AG, Borgida A, Shroff RT, et al. Overall survival and clinical characteristics of BRCA-associated cholangiocarcinoma: a multicenter retrospective study. Oncologist. 2017;22(7):804–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chae H, Kim D, Yoo C, Kim KP, Jeong JH, Chang HM, et al. Therapeutic relevance of targeted sequencing in management of patients with advanced biliary tract cancer: DNA damage repair gene mutations as a predictive biomarker. Eur J Cancer. 2019;120:31–9.

    Article  CAS  PubMed  Google Scholar 

  41. Heeke AL, Pishvaian MJ, Lynce F, Xiu J, Brody JR, Chen W-J, et al. Prevalence of homologous recombination–related gene mutations across multiple cancer types. JCO Precis Oncol. 2018;2:1–13.

    Google Scholar 

  42. Park JO, Feng Y-H, Chen Y-Y, Su W-C, Oh D-Y, Shen L, et al. Updated results of a phase IIa study to evaluate the clinical efficacy and safety of erdafitinib in Asian advanced cholangiocarcinoma (CCA) patients with FGFR alterations. J Clin Oncol. 2019;37(15_suppl):4117.

    Article  Google Scholar 

  43. Abou-Alfa GK, Sahai V, Hollebecque A, Vaccaro G, Melisi D, Al-Rajabi R, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 2020;21(5):671–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Javle M, Lowery M, Shroff RT, Weiss KH, Springfeld C, Borad MJ, et al. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J Clin Oncol. 2018;36(3):276–82.

    Article  CAS  PubMed  Google Scholar 

  45. Furuse J, Goyal L, Meric-Bernstam F, Hollebecque A, Valle JW, Morizane C, et al. 116MO Efficacy, safety, and quality of life (QoL) with futibatinib in patients (pts) with intrahepatic cholangiocarcinoma (iCCA) harboring FGFR2 fusions/rearrangements: FOENIX-CCA2. Ann Oncol. 2020;31:S1288–S9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chigusa Morizane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morizane, C. (2021). Precision Medicine for Pancreatic Cancer and Cholangiocarcinoma. In: Isayama, H., Nakai, Y., Sasaki, T. (eds) Management of Pancreatic Cancer and Cholangiocarcinoma. Springer, Singapore. https://doi.org/10.1007/978-981-16-2870-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2870-2_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2869-6

  • Online ISBN: 978-981-16-2870-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics