Skip to main content

A Review on Gas Sensor Technology and Its Applications

  • Conference paper
  • First Online:
Computational and Experimental Methods in Mechanical Engineering

Abstract

Gas sensors have drawn the researchers’ community’s attention for a few decades due to their numerous applications in different areas of environmental monitoring, biomedical devices, and pharma industries, etc. Normally gas sensing research includes polymers, metal-oxide-based semiconducting materials, porous silicon, etc. The performance of gas sensors is characterized by considering various scientific parameters, such as its sensitivity, lowest detection value, response time, recovery time, selectivity, and working temperature. Polymers are known for their sensitive thermal, electrical, mechanical, and dielectric properties. Due to such characteristics, they have gained a wide interest in theoretical research as well as practical applications in sensor technology and devices. This paper reveals a wide research review about the gas sensor structure as a sensing device in the field of the sensor. In the end, the current status, future perspectives as well as advantages of particular polymer-based sensors are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, D., Lei, S., Chen, Y.: A single polyaniline nanofiber field-effect transistor and it’s gas sensing mechanisms. Sensors 11, 6509–6516 (2011)

    Article  Google Scholar 

  2. Anderson, T., Ren, F., Pearton, S., Kang, B.S., Wang, H.-T., Chang, C.-Y., Lin, J.: Advances in hydrogen, carbon dioxide, and hydrocarbon gas sensor technology using GaN and ZnO-based devices. Sensors 9, 4669–4694 (2009)

    Article  Google Scholar 

  3. Chaisitsak, S.: Nanocrystalline SnO2: F thin films for liquid petroleum gas sensors. Sensors 11, 7127–7140 (2011)

    Article  Google Scholar 

  4. Alfeeli, B., Pickrell, G., Wang, A.: Sub-nanoliter spectroscopic gas sensor. Sensors 6, 1308–1320 (2006)

    Article  Google Scholar 

  5. Aldhafeeri, T., Tran, M.-K., Vrolyk, R., Pope, M., Fowler, M.: A review of methane gas detection sensors: recent developments and future perspectives. Inventions 5, 28 (2020)

    Article  Google Scholar 

  6. Chaulya, S.K., Prasad, G.M.: Chapter 3—Gas sensors for underground mines and hazardous areas, sensing and monitoring technologies for mines and hazardous areas. Monitoring and Prediction Technologies, pp. 161–212 (2016)

    Google Scholar 

  7. Marr, I., Reiß, S., Hagen, G., Moos, R.: Planar zeolite film-based potentiometric gas sensors manufactured by a combined thick-film and electroplating technique. Sensors 11, 7736–7748 (2011)

    Article  Google Scholar 

  8. Miya, H., Shiina, T., Kato, T., Noguchi, K., Fukuchi, T., Asahi, I., Sugimoto, S., Ninomiya, H., Shimamoto, Y.: Compact Raman Lidar for hydrogen gas leak detection. In: Proceedings of 2009 Conference on Lasers and Electro-Optics/Pacific Rim (CLEOPR), Shanghai, China, 30 July–3 Aug 2009, pp. 1–2

    Google Scholar 

  9. Tardy, P., Coulon, J.R., Lucat, C., Menil, F.: Dynamic thermal conductivity sensor for gas detection. Sens. Actuators B 98, 63–68 (2004)

    Article  Google Scholar 

  10. Caucheteur, C., Debliquy, M., Lahem, D., Megret, P.: Catalytic fiber Bragg grating sensor for hydrogen leak detection in air. IEEE Photonics Technol. Lett. 20, 96–98 (2008)

    Article  Google Scholar 

  11. JoĂŁo, B.A., Gomes, J., Rodrigues, J.P.C., RabĂŞlo, R.A.L., Kumar, N., Kozlov, S.: IoT-enabled gas sensors: technologies, applications, and opportunities. J. Sens. Actuator Netw. 8, 57 (2019)

    Google Scholar 

  12. Fan, Y., et al.: Design and application of toxic and harmful gas monitoring system in fire fighting. Sensors (Basel, Switzerland) 19(2), 369 (2019)

    Google Scholar 

  13. Gonzalez-Jimenez, J., Monroy, J.G., Blanco, J.L.: The multi-chamber electronic nose—an improved olfaction sensor for mobile robotics. Sensors 11, 6145–6164 (2011)

    Google Scholar 

  14. Xiaobo, Z., Jiewen, Z., Shouyi, W., Xingyi, H.: Vinegar classification based on feature extraction and selection from tin oxide gas sensor array data. Sensors 3, 101–109 (2003)

    Article  Google Scholar 

  15. Munoz, B.C., Steinthal, G., Sunshine, S.: Conductive polymercarbon black composites-based sensor arrays for use in an electronic nose. Sens. Rev. 19, 300–305 (1999)

    Article  Google Scholar 

  16. Shrivas, A.G., Bavane, R.G., Mahajan, A.M.: Electronic nose: a toxic gas sensor by polyaniline thin film conducting polymer. In: Proceedings of International Workshop on Physics of Semiconductor Devices 2007 (IWPSD 2007), Mumbai, India, 16–20 Dec 2007, pp. 621–623

    Google Scholar 

  17. Kim, S.-J., Hwang, I.-S., Kang, Y.C., Lee, J.-H.: Design of selective gas sensors using additive-loaded in2o3 hollow spheres prepared by combinatorial hydrothermal reactions. Sensors 11, 10603–10614 (2011)

    Google Scholar 

  18. Cubillas, A.M., Lazaro, J.M., Conde, O.M., Petrovich, M.N., Lopez-Higuera, J.M.: Gas sensor based on photonic crystal fibres in the 2ν3 and ν2 + 2ν3 vibrational bands of methane. Sensors 9, 6261–6272 (2009)

    Article  Google Scholar 

  19. Ding, B., Wang, M., Yu, J., Sun, G.: Gas sensors based on electrospun nanofibers. Sensors 9, 1609–1624 (2009)

    Article  Google Scholar 

  20. Bakrania, S.D., Wooldridge, M.S.: The effects of the location of Au additives on combustion-generated SnO2 nanopowders for co gas sensing. Sensors 10, 7002–7017 (2010)

    Google Scholar 

  21. Hulko, M., Hospach, I., Krasteva, N., Nelles, G.: Cytochrome C biosensor—a model for gas sensing. Sensors 11, 5968–5980 (2011)

    Article  Google Scholar 

  22. Lazik, D., Ebert, S., Leuthold, M., Hagenau, J., Geistlinger, H.: Membrane based measurement technology for in situ monitoring of gases in soil. Sensors 9, 756–767 (2009)

    Article  Google Scholar 

  23. Fine, G.F., Cavanagh, L.M., Afonja, A., Binions, R.: Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10, 5469–5502 (2010)

    Article  Google Scholar 

  24. Zhang, J., Hu, J.Q., Zhu, F.R., Gong, H., O’Shea, S.J.: Quartz crystal microbalance coated with sol-gel-derived thin films as gas sensor for no detection. Sensors 3, 404–414 (2003)

    Article  Google Scholar 

  25. Xu, X., Wang, J., Long, Y.: Zeolite-based materials for gas sensors. Sensors 6, 1751–1764 (2006)

    Article  Google Scholar 

  26. Tiziana, C.B., Garrett, D.C., Lynford, L.G., Elaine, M.B.: Photonic MEMS for NIR in situ gas detection and identification. In: Proceedings of 2007 IEEE Sensors, Atlanta, GA, USA, 28–31 Oct 2007, pp. 1368–1371

    Google Scholar 

  27. Madgula, K., Shubha, L.N.: Conducting Polymer Nanocomposite-Based Gas Sensors. In: Thomas, S., Joshi, N., Tomer, V. (eds.) Functional Nanomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore (2020)

    Google Scholar 

  28. Cichosz, S., Masek, A., Zaborski, M.: Polymer-based sensors: a review. Polym. Testing 67, 342–348 (2018)

    Article  Google Scholar 

  29. Liu, X., Cheng, S., Liu, H., Hu, S., Zhang, D., Ning, H.: A survey on gas sensing technology. Sensors 12, 9635–9665 (2012)

    Google Scholar 

  30. Ishiguro, Y., Suzuki, T., Nagawa, Y., Kino, O.: Gas sensors for environment monitoring,. In: Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I & M. 1994 IEEE Instrumentation and Measurement Technology Conference (Cat. No.94CH3424-9), Hamamatsu, Japan, vol. 3, pp. 1521–1522 (1994)

    Google Scholar 

  31. Lee, D.-D., Lee, D.-S.: Environmental gas sensors. IEEE Sens. J. 1(3), 214–224 (2001). https://doi.org/10.1109/JSEN.2001.954834. IEEE Xplore

    Article  Google Scholar 

  32. Nasiri, N., Clarke, C.: Nanostructured gas sensors for medical and health applications: low to high dimensional materials. Biosensors 9(1), 43 (2019)

    Google Scholar 

  33. Santonico, M., Pennazza, G., Parente, F.R., Grasso, S., Zompanti, A., Stornelli, V., Ferri, G., Bizzarri, M., D’Amico, A.: A gas sensor device for oxygen and carbon dioxide detection. Proceedings, vol. 1, p. 447 (2017)

    Google Scholar 

  34. Hunter, G, Chen, L.-Y., Neudeck, P.G., Zhou, H.-J.: Chemical gas sensors for aeronautic and space applications. Source NASA Technical Report Server [NTRS] (1997)

    Google Scholar 

  35. Funazakia, N., Hemmia, A., Ito, S., Asanoa, Y., Yano, Y., Miurac, N., Yamazoec, N.: Application of semiconductor gas sensor to quality control of meat freshness in food industry. Sens. Actuators B Chem. 25(1–3), 797–800 (1995)

    Google Scholar 

  36. Yang, J., Chen, B., Zhou, J., Lv, Z.: A low-power and portable biomedical device for respiratory monitoring with a stable power source. Sensors (Basel). 15(8), 19618–19632 (2015)

    Google Scholar 

  37. Fine, G.F., Cavanagh, L.M., Afonja, A., Binions, R.: Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10(6), 5469–5502 (2010)

    Article  Google Scholar 

  38. Kuo, C.-G., Huang, C.-W., Chen, J.-H., Liu, Y.-H.: Fabrication of a miniature zinc aluminum oxide nanowire array gas sensor and application for environmental monitoring. Int. J. Photoenergy 2014, 7. Article ID 515268 (2014)

    Google Scholar 

  39. Binions, R., Naik, A.J.T.: Chapter 13—Metal oxide semiconductor gas sensors in environmental monitoring. Semiconductor Gas Sensors. Electronic and Optical Materials. Woodhead Publishing, pp. 433–466 (2013)

    Google Scholar 

  40. Bogue, R.: Nanomaterials for gas sensing: a review of recent research. Sens. Rev. 34(1), 1–8 (2014)

    Article  Google Scholar 

  41. Mirzaei, A., Lee, J.-H., Majhi, S.M., Weber, M., Bechelany, M., Kim, H.W., Kim, S.S.: Resistive gas sensors based on metal-oxide nanowires. J. Appl. Phys. 126, 241102 (2019)

    Google Scholar 

  42. Yang, L., Lin, H., Zhang, Z., et al.: Gas sensing of tellurium-modified silicon nanowires to ammonia and propylamine. Sens. Actuators B Chem. 177, 260–264 (2013)

    Article  Google Scholar 

  43. Zhu, Z., Kao, C.T., Wu, R.J.: A highly sensitive ethanol sensor based on Ag@TiO2 nanoparticles at room temperature. Appl. Surf. Sci. 320, 348–355 (2014)

    Google Scholar 

  44. Li, Z., Li, H., Wu, Z., Wang, M., Luo, J., Torun, H., et al.: Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horizons 6(3), 470–506 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saxena, P., Shukla, P. (2022). A Review on Gas Sensor Technology and Its Applications. In: Rao, V.V., Kumaraswamy, A., Kalra, S., Saxena, A. (eds) Computational and Experimental Methods in Mechanical Engineering. Smart Innovation, Systems and Technologies, vol 239. Springer, Singapore. https://doi.org/10.1007/978-981-16-2857-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2857-3_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2856-6

  • Online ISBN: 978-981-16-2857-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics