Skip to main content

Similarities and Differences of Autophagy in Mammals, Plants, and Microbes

  • Chapter
  • First Online:
Autophagy: Biology and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1208))

Abstract

Autophagy, a highly conserved metabolic process in eukaryotes, is a widespread degradation/recycling system. However, there are significant differences (as well as similarities) between autophagy in animals, plants, and microorganisms such as yeast. While the overall process of autophagy is similar between different organisms, the molecular mechanisms and the pathways regulating autophagy are different, which is manifested in the diversity and specificity of the genes involved. In general, the autophagy system is much more complicated in mammals than in yeast. In addition, there are some differences in the types of autophagy present in animals, plants, and microorganisms. For example, there is a unique type of selective autophagy called the cytoplasm-to-vacuole targeting (Cvt) pathway in yeast, and a special kind of autophagy, chloroplast autophagy, exists in plants. In conclusion, although autophagy is highly conserved in eukaryotes, there are still many differences between autophagy of animals, plants, and microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMA:

Chaperone-mediated autophagy

Cvt pathway:

Cytoplasm-to-vacuole targeting pathway

ERGIC :

ER-Golgi intermediate compartment

ESCRT:

Endosomal sorting complexes required for transport

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GCN pathway:

General control of nutrient

HIF-1 :

Hypoxia-inducible factor 1

MVB:

Multi-vesicle body

PAS:

Phagophore assembly site

PE:

Phosphatidylethanolamine

PRR:

Pattern recognition receptor

References

  • Booth LA, Tavallai S, Hamed HA, Cruickshanks N, Dent P. The role of cell signalling in the crosstalk between autophagy and apoptosis. Cell Signal. 2014;26:549–55.

    Article  CAS  Google Scholar 

  • Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018;19:349–64.

    Google Scholar 

  • Dimou E, Nickel W. Unconventional mechanisms of eukaryotic protein secretion. Curr Biol. 2018;28(8):R406-R410.

    Google Scholar 

  • Gallagher LE, Williamson LE, Chan EYW. Advances in autophagy regulatory mechanisms. Cells. 2016;5:24.

    Article  Google Scholar 

  • Han S, Wang Y, Zheng X, Jia Q, Zhao J, Bai F, Hong Y, Liu Y. Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamiana. Plant Cell. 2015;27(4):1316–31.

    Google Scholar 

  • Kaushik S, Cuervo AM. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol. 2018;19:365–81.

    Article  CAS  Google Scholar 

  • Kim SH, Kwon C, Lee JH, Chung T. Genes for plant autophagy: functions and interactions. Mol Cells. 2012;34:413–23.

    Article  CAS  Google Scholar 

  • Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y. A unified nomenclature for yeast autophagy-related genes. Dev Cell. 2003;5:539–45.

    Article  CAS  Google Scholar 

  • Kulich I, Pecenkova T, Sekeres J, Smetana O, Fendrych M, Foissner I, Hoftberger M, Zarsky V. Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic. 2013;14(11):1155–65.

    CAS  PubMed  Google Scholar 

  • Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature. 2004;432(7020):1032–6.

    Article  CAS  Google Scholar 

  • Kwon HS, Kawaguchi K, Kikuma T, Takegawa K, Kitamoto K, Higuchi Y. Analysis of an acyl-CoA binding protein in Aspergillus oryzae that undergoes unconventional secretion. Biochem Biophys Res Commun. 2017;493:481–6.

    Google Scholar 

  • Lefebvre C, Legouis R, Culetto E. ESCRT and autophagies: endosomal functions and beyond. Semin Cell Dev Biol. 2018;74:21–8.

    Article  CAS  Google Scholar 

  • Lemus L, Goder V. A SNARE and specific COPII requirements define ER-derived vesicles for the biogenesis of autophagosomes. Autophagy. 2016;12:1049–50.

    Article  CAS  Google Scholar 

  • Lescat L, Veron V, Mourot B, Peron S, Chenais N, Dias K, Riera-Heredia N, Beaumatin F, Pinel K, Priault M, Panserat S, Salin B, Guiguen Y, Bobe J, Herpin A, Seiliez I. Chaperone-mediated autophagy in the light of evolution: insight from fish. Mol Biol Evol. 2020;37(10):2887–99.

    Article  CAS  Google Scholar 

  • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42.

    Article  CAS  Google Scholar 

  • Meijer WH, van der Klei IJ, Veenhuis M, Kiel JA. ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy. 2007;3(2):106–16.

    Article  CAS  Google Scholar 

  • Mercer TJ, Gubas A, Tooze SA. A molecular perspective of mammalian autophagosome biogenesis. J Biol Chem. 2018;293:5386–95.

    Article  CAS  Google Scholar 

  • Michaeli S, Galili G, Genschik P, Fernie AR, Avin-Wittenberg T. Autophagy in plants—what’s new on the menu? Trends Plant Sci. 2016;21:134–44.

    Article  CAS  Google Scholar 

  • Moloudizargari M, Asghari MH, Ghobadi E, Fallah M, Rasouli S, Abdollahi M. Autophagy, its mechanisms and regulation: implications in neurodegenerative diseases. Ageing Res Rev. 2017;40:64–74.

    Article  CAS  Google Scholar 

  • Monastyrska I, Kiel JAKW, Krikken AM, Komduur JA, Veenhuis M, van der Klei IJ. The Hansenula polymorpha ATG25 gene encodes a novel coiled-coil protein that is required for macropexophagy. Autophagy. 2005;1:92–100.

    Article  CAS  Google Scholar 

  • Noda T. Regulation of autophagy through TORC1 and mTORC1. Biomolecules. 2017;7:52.

    Article  Google Scholar 

  • Ryabovol VV, Minibayeva FV. Molecular mechanisms of autophagy in plants: role of ATG8 proteins in formation and functioning of autophagosomes. Biochemistry (Mosc). 2016;81:348–63.

    Article  CAS  Google Scholar 

  • Schaaf MB, Keulers TG, Vooijs MA, Rouschop KM. LC3/GABARAP family proteins: autophagy-(un)related functions. FASEB J. 2016;30:3961–78.

    Article  CAS  Google Scholar 

  • Suzuki K, Akioka M, Kondo-Kakuta C, Yamamoto H, Ohsumi Y. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J Cell Sci. 2013;126:2534–44.

    Google Scholar 

  • Tang J, Bassham DC. Autophagy in crop plants: what’s new beyond Arabidopsis? Open Biol. 2018;8(12):180162.

    Google Scholar 

  • Thompson AR, Vierstra RD. Autophagic recycling: lessons from yeast help define the process in plants. Curr Opin Plant Biol. 2005;8:165–73.

    Article  CAS  Google Scholar 

  • Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993;333:169–74.

    Google Scholar 

  • Umekawa M, Klionsky DJ. Ksp1 kinase regulates autophagy via the target of rapamycin complex 1 (TORC1) pathway. J Biol Chem. 2012;287:16300–10.

    Article  CAS  Google Scholar 

  • Vlahakis A, Graef M, Nunnari J, Powers T. TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy. Proc Natl Acad Sci U S A. 2014;111:10586–91.

    Article  CAS  Google Scholar 

  • Wang P, Mugume Y, Bassham DC. New advances in autophagy in plants: regulation, selectivity and function. Semin Cell Dev Biol. 2018;80:113–22.

    Article  Google Scholar 

  • Wen X, Klionsky DJ. An overview of macroautophagy in yeast. J Mol Biol. 2016;428:1681–99.

    Article  CAS  Google Scholar 

  • Xie Q, Michaeli S, Peled-Zehavi H, Galili G. Chloroplast degradation: one organelle, multiple degradation pathways. Trends Plant Sci. 2015;20:264–5.

    Article  CAS  Google Scholar 

  • Yang Z, Geng J, Yen WL, Wang K, Klionsky DJ. Positive or negative roles of different cyclin-dependent kinase Pho85-cyclin complexes orchestrate induction of autophagy in Saccharomyces cerevisiae. Mol Cell. 2010;38:250–64.

    Google Scholar 

  • Yi C, Tong J, Lu P, Wang Y, Zhang J, Sun C, Yuan K, Xue R, Zou B, Li N, Xiao S, Dai C, Huang Y, Xu L, Li L, Chen S, Miao D, Deng H, Li H, Yu L. Formation of a Snf1-Mec1-Atg1 module on mitochondria governs energy deprivation-induced autophagy by regulating mitochondrial respiration. Dev Cell. 2017;41:59–71.e4.

    Article  CAS  Google Scholar 

  • Yorimitsu T, Zaman S, Broach JR, Klionsky DJ. Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol Biol Cell. 2007;18:4180–9.

    Google Scholar 

  • Yoshimoto K, Ohsumi Y. Unveiling the molecular mechanisms of plant autophagy-from autophagosomes to vacuoles in plants. Plant Cell Physiol. 2018;59:1337–44.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, FC., Shi, HB., Liu, XH. (2021). Similarities and Differences of Autophagy in Mammals, Plants, and Microbes. In: Xie, Z. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1208. Springer, Singapore. https://doi.org/10.1007/978-981-16-2830-6_7

Download citation

Publish with us

Policies and ethics