Skip to main content

Simulation of Static Walking in an Exoskeleton

Part of the Smart Innovation, Systems and Technologies book series (SIST,volume 232)

Abstract

This article discusses aspects of the operators static walking in a human–machine exoskeletal system increasing the physical capabilities of a person. The development of BTWS models and algorithms, the control strategy implemented by the human–machine interface (HMI) and ensuring the human functionality expansion, is an urgent scientific and technical task. The most important element of BTWS, providing high precision control of the links of the exoskeleton system, is the HMI. In this article, BTWS is considered as a collection of elements, united by heterogeneous and multilevel types of links, as an integral object. The development of control algorithms for the BTWS exoskeleton, using a systematic approach, methods of decomposition, analysis and synthesis, the apparatus of the theory of automatic control and related modern methods of mathematical modeling, allows to explore a complex object as a whole. At the framework of this article, the following results are achieved. The mathematical model of a human exoskeleton during static walking is developed. A model of the system center of mass movement and also a model foot plane-parallel movement during walking on a horizontal rough surface has been developed, which ensures a stable vertical position during walking. Diagrams and trajectories of ankle joint and the center of mass movement during walking were built. The method for determining the force effect on the human–machine system at the interaction of the foot and lower leg is proposed.

Keywords

  • Biotechnical walking system
  • Mathematical modeling
  • Step phases
  • Center of mass trajectory

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-2814-6_5
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-2814-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Jatsun, S., Malchikov, A., Loktionova, O.: Modeling of human-machine interaction in an industrial exoskeleton control system. In: International Conference on Interactive Collaborative Robotics, pp. 116–125. Springer, Cham (2020)

    Google Scholar 

  2. Chernikova, L.A., Demidova, A.E., Domashenko, M.A., Truhanov, A.I.: The effect of using robotic devices (“Erigo” and “Lokomat”) in the early stages after ischemic stroke. Bull. Restor. Med. 5, 73–75 (2008)

    Google Scholar 

  3. Jatsun, S., Malchikov, A., Yatsun, A.: Simulation of a walking robot-exoskeleton movement on a movable base. In: CLAWAR 2020 Proceedings, pp. 15–22. CLAWAR Association Ltd, UK (2020)

    Google Scholar 

  4. Al-, M.S., Elamvazuthi, I., Daud, S.A., Parasuraman, S., Borboni, A.: EEG-based control for upper and lower limb exoskeletons and prostheses: a systematic review. Sensors 18(10), 3342 (2018)

    CrossRef  Google Scholar 

  5. Kawamoto, H., Lee, S., Kanbe, S., Sankai, Y.: Power assist method for HAL-3 using EMG-based feedback controller. In: SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme-System Security and Assurance vol. 2, pp. 1648–1653. IEEE (2003)

    Google Scholar 

  6. Bhagat, N.A., Venkatakrishnan, A., Abibullaev, B., Artz, E.J., Yozbatiran, N., Blank, A.A., French, J., Karmonik, C., Grossman, R., O’Malley, M.K., Francisco, G.E., Contreras-Vidal, J.L.: Design and optimization of an EEG-based brain machine interface (BMI) to an upper-limb exoskeleton for stroke survivors. Front. Neurosci. 10, 122 (2016)

    CrossRef  Google Scholar 

  7. Rosen, J., Brand, M., Fuchs, M.B., Arcan, M.: A myosignal-based powered exoskeleton system. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 31(3), 210–222 (2001)

    CrossRef  Google Scholar 

  8. Aguirre-Ollinger, G., Colgate, J.E., Peshkin, M.A., Goswami, A.: Active-impedance control of a lower-limb assistive exoskeleton. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 188–195. IEEE (2007)

    Google Scholar 

  9. Anam, K., Al-, A.A.: Active exoskeleton control systems: state of the art. Procedia Eng. 41, 988–994 (2012)

    CrossRef  Google Scholar 

  10. Kazerooni, H., Steger, R., Huang, L.: Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX). Int. J. Robot. Res. 25(5–6), 561–573 (2006)

    CrossRef  Google Scholar 

  11. Jatsun, S., Malchikov, A., Yatsun, A.: Comparative analysis of the industrial exoskeleton control systems. In: Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin's Readings”, pp. 63–74. Springer, Singapore (2020)

    Google Scholar 

  12. Sheean, G.: The pathophysiology of spasticity. Eur. J. Neurol. 9, 3–9 (2002)

    CrossRef  Google Scholar 

  13. Stampacchia, G., Rustici, A., Bigazzi, S., Gerini, A., Tombini, T., Mazzoleni, S.: Walking with a powered robotic exoskeleton: subjective experience, spasticity and pain in spinal cord injured persons. Neuro Rehabil. 39(2), 277–283 (2016)

    Google Scholar 

  14. Hill, A.V.: First and Last Experiments in Muscle Mechanics. Cambridge University Press, New York (1970)

    Google Scholar 

  15. Heo, P., Gu, G.M., Lee, Sj., Rhee, K., Kim, J.: Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int. J. Precis. Eng. Manuf. 13(5), 807–824 (2012)

    Google Scholar 

  16. Veneman, J.F., Kruidhof, R., Hekman, E.E., Ekkelenkamp, R., Van Asseldonk, E.H., Van Der Kooij, H.: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 379–386 (2007)

    CrossRef  Google Scholar 

  17. Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots vol. 1, pp. 399–406. IEEE (1995)

    Google Scholar 

  18. Lu, R., Li, Z., Su, C.Y., Xue, A.: Development and learning control of a human limb with a rehabilitation exoskeleton. IEEE Trans. Industr. Electron. 61(7), 3776–3785 (2013)

    CrossRef  Google Scholar 

  19. Rajasekaran, V., Aranda, J., Casals, A., Pons, J.L.: An adaptive control strategy for postural stability using a wearable robot. Robot. Auton. Syst. 73, 16–23 (2015)

    CrossRef  Google Scholar 

  20. Brahmi, B., Saad, M., Ochoa-Luna, C., Rahman, M.H., Brahmi, A.: Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control. IEEE/ASME Trans. Mechatron. 23(2), 575–585 (2018)

    CrossRef  Google Scholar 

Download references

Acknowledgements

The work was supported by Russian Federation President grant for young scientists, candidates of sciences MK-901.2020.8

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Jatsun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Jatsun, S., Yatsun, A., Fedorov, A., Saveleva, E. (2022). Simulation of Static Walking in an Exoskeleton. In: Ronzhin, A., Shishlakov, V. (eds) Electromechanics and Robotics. Smart Innovation, Systems and Technologies, vol 232. Springer, Singapore. https://doi.org/10.1007/978-981-16-2814-6_5

Download citation