Skip to main content

Abstract

In this chapter, several robotic and multibody systems, which are used in practical applications, are introduced. The significance of the study on flexible system dynamics and its computational complexity is explained. Research work in the past on various issues relating to the dynamics of multibody systems is reviewed. The review is divided into following parts: dynamic modeling of rigid open-loop serial-chain systems, flexible systems, closed-loop systems, and computational efficiency. Modeling techniques used by other researchers to achieve high computational efficiency are also reported. Various discretization techniques used to kinematically model the deflections of flexible links are compared. Criteria used by various researchers to investigate the computational efficiency of simulation algorithms are reviewed as well. Finally, the advantages of the DeNOCbased methodology over others are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Agrawal OP, Shabana AA (1985) Dynamic analysis of multibody systems using component modes. Comput Struct 21(6):1303–1312. https://doi.org/10.1016/0045-7949(85)90184-1

    Article  Google Scholar 

  2. Alberts TE, Xia H, Chen Y (1992) Dynamic analysis to evaluate viscoelastic passive damping augmentation for the space shuttle remote manipulator system. J Dyn Syst Meas Contr 114(3):468–475. https://doi.org/10.1115/1.2897370

    Article  Google Scholar 

  3. Ambrosio J (1996) Dynamics of structures undergoing gross motion and nonlinear deformations: a multibody approach. Comput Struct 59(6):1001–1012

    Article  MATH  Google Scholar 

  4. Ambrosio JAC, Nikravesh PE (1992) Elasto-plastic deformations in multibody dynamics. Nonlinear Dyn 3(2):85–104

    Article  Google Scholar 

  5. Angeles J, Lee SK (1988) Formulation of dynamical equations of holonomic mechanical systems using a natural orthogonal complement. J Appl Mech, Trans ASME 55(1):243–244

    Article  MATH  Google Scholar 

  6. Angeles J, Ma O (1988) Dynamic simulation of n-axis serial robotic manipulators using a natural orthogonal complement. Int J Robot Res 7(5):32–47

    Article  Google Scholar 

  7. Angeles J, Ma O, Rojas A (1989) An algorithm for the inverse dynamics of n-axis general manipulators using Kane’s equations. Comput Math Appl 17(12):1545–1561

    Article  MATH  Google Scholar 

  8. Asada H, Ma Z-D, Tokumaru H (1990) Inverse dynamics of flexible robot arms: modeling and computation for trajectory control. J Dyn Syst Meas Contr 112(2):177–185. https://doi.org/10.1115/1.2896124

    Article  MATH  Google Scholar 

  9. Ascher UM, Pai DK, Cloutier BP (1997) Forward dynamics, elimination methods, and formulation stiffness in robot simulation. Int J Robot Res 16(6):749–758

    Article  Google Scholar 

  10. Bakr EM, Shabana AA (1987) Timoshenko beams and flexible multibody system dynamics. J Sound Vib 116(1):89–107

    Article  MATH  Google Scholar 

  11. Balafoutis CA, Patel RV (1991) Dynamic analysis of robot manipulators: a Cartesian tensor approach, vol 131. Springer Science & Business Media

    Google Scholar 

  12. Baruh H, Tadikonda SSK (1989) Issues in the dynamics and control of flexible robot manipulators. J Guid Control Dyn 12(5):659–671. https://doi.org/10.2514/3.20460

    Article  MathSciNet  MATH  Google Scholar 

  13. Bauchau OA (1998) Computational schemes for flexible, nonlinear multi-body systems. Multibody Syst Dyn 2(2):169–225

    Article  MathSciNet  MATH  Google Scholar 

  14. Bauchau OA (2000) On the modeling of prismatic joints in flexible multi-body systems. Comput Meth Appl Mech Eng 181(1–3):87–105

    Article  MATH  Google Scholar 

  15. Bauchau OA, Wang J (2006) Stability analysis of complex multibody systems. J Comput Nonlinear Dyn 1(1):71–80

    Article  Google Scholar 

  16. Baumgarte J (1972) Stabilization of constraints and integrals of motion in dynamical systems. Comput Methods Appl Mech Eng 1(1):1–16

    Article  MathSciNet  MATH  Google Scholar 

  17. Blajer W, Schiehlen W (1992) Walking without impacts as a motion/force control problem. J Dyn Syst, Meas Control, Trans ASME 114(4):660–665

    Article  Google Scholar 

  18. Book WJ (1984) Recursive lagrangian dynamics of flexible manipulator arms. Int J Robot Res 3(3):87–101

    Article  Google Scholar 

  19. Boyer F, Glandais N, Khalil W (2002) Flexible multibody dynamics based on a non-linear Euler-Bernoulli kinematics. Int J Numer Meth Eng 54(1):27–59

    Article  MATH  Google Scholar 

  20. Brandl H, Johanni R, Otter M (1986) A very efficient algorithm for the simulation of robots and similar multibody systems without inversion of the mass matrix. IFAC Proc Volumes 19(14):95–100

    Article  Google Scholar 

  21. Brogliato B, Rey D, Pastore A, Barnier J (1998) Experimental comparison of nonlinear controllers for flexible joint manipulators. Int J Robot Res 17(3):260–281. https://doi.org/10.1177/027836499801700304

    Article  Google Scholar 

  22. Cameron JM, Book WJ (1997) Modeling mechanisms with nonholonomic joints using the Boltzmann-Hamel equations. Int J Robot Res 16(1):47–59

    Article  Google Scholar 

  23. Cetinkunt S, Book WJ (1987) Symbolic modeling of flexible manipulators, pp 2074–2080

    Google Scholar 

  24. Cetinkunt S, Ittoop B (1992) Computer-automated symbolic modeling of dynamics of robotic manipulators with flexible links. IEEE Trans Robot Autom 8(2):94–105. https://doi.org/10.1109/70.127243

  25. Chandrashaker M, Ghosal A (2006) Nonlinear modeling of flexible manipulators using nondimensional variables. J Comput Nonlinear Dyn 1(2):123–134

    Article  Google Scholar 

  26. Chang B, Nikravesh P (1985) An adaptive constraint violation stablisation method for dynamic analysis of mechanical systems. Trans ASME Appl Mech 104:488–492

    Google Scholar 

  27. Chang B, Shabana AA (1990) Nonlinear finite element formulation for the large displacement analysis of plates. J Appl Mech 57(3):707–718. https://doi.org/10.1115/1.2897081

    Article  MATH  Google Scholar 

  28. Chapnik BV, Heppler GR, Aplevich JD (1991) Modeling impact on a one-link flexible robotic arm. IEEE Trans Robot Autom 7(4):479–488. https://doi.org/10.1109/70.86078

    Article  Google Scholar 

  29. Chaudhary H, Saha SK (2007) Constraint force formulation for closed-loop multibody systems. Trans ASME J Mech Des 129:1234–1242

    Article  Google Scholar 

  30. Chedmail P, Aoustin Y, Chevallereau C (1991) Modelling and control of flexible robots. Int J Numer Meth Eng 32(8):1595–1619

    Article  MATH  Google Scholar 

  31. Ching FMC, Wang D (2003) Exact solution and infinite-dimensional stability analysis of a single flexible link in collision. IEEE Trans Robot Autom 19(6):1015–1020. https://doi.org/10.1109/TRA.2003.819716

    Article  Google Scholar 

  32. Cloutier BP, Pai DK, Ascher UM (1995) Formulation stiffness of forward dynamics algorithms and implications for robot simulation, pp 2816–2822

    Google Scholar 

  33. Craig RR, Bampton MCC (1968) Coupling of substructures for dynamic analyses. AIAA J 6(7):1313–1319. https://doi.org/10.2514/3.4741

    Article  MATH  Google Scholar 

  34. Craig RR, Kurdila AJ (2006) Fundamentals of structural dynamics. John Wiley & Sons

    MATH  Google Scholar 

  35. Cuadrado J, Cardenal J, García de Jalón J (1996) Flexible mechanisms through natural coordinates and component synthesis: an approach fully compatible with the rigid case. Int J Numer Meth Eng 39(20):3535–3551

    Article  MATH  Google Scholar 

  36. Cyril X (1988) Dynamics of flexible-link manipulators. McGill University, Canada

    Google Scholar 

  37. Damaren C, Sharf I (1995) Simulation of flexible-link manipulators with inertial and geometric nonlinearities. J Dyn Syst Meas Contr 117(1):74–87. https://doi.org/10.1115/1.2798525

    Article  MATH  Google Scholar 

  38. D’Eleuterio GMT, Barfooy TD (1999) Just a second, we’d like to go first: a first-order discreized formulation for structural dynamics. In: Proceedings of the fourth international conference on dynamics and controls, London, pp 1–24

    Google Scholar 

  39. De Luca A, Siciliano B (1991) Closed-form dynamic model of planar multilink lightweight robots. IEEE Trans Syst Man Cybern 21(4):826–839

    Article  MathSciNet  Google Scholar 

  40. De Luca A, Siciliano B (1993) Regulation of flexible arms under gravity. IEEE Trans Robot Autom 9(4):463–467. https://doi.org/10.1109/70.246057

    Article  Google Scholar 

  41. Dimitrov D (2005) Dynamics and control of space manipulators during a satellite capturing operation. Tohoku University, Graduate School of Engineering, Japan

    Google Scholar 

  42. Dwivedy SK, Eberhard P (2006) Dynamic analysis of flexible manipulators, a literature review. Mech Mach Theory 41(7):749–777

    Article  MathSciNet  MATH  Google Scholar 

  43. Eberhard P, Schiehlen W (2006) Computational dynamics of multibody systems: history, formalisms, and applications. J Comput Nonlinear Dyn 1(1):3–12

    Article  Google Scholar 

  44. Ellis RE, Ismaeil OM, Carmichael IH (1992) Numerical stability of foward-dynamics algorithms, pp 305–311

    Google Scholar 

  45. Featherstone R (1983) Calculation of robot dynamics using articulated-body inertias. Int J Robot Res 2(1):13–30

    Article  Google Scholar 

  46. Featherstone R, Orin D (2000) Robot dynamics: equations and algorithms. In: IEEE international conference on robotics and automation 2000, vol 821. pp 826–834. https://doi.org/10.1109/robot.2000.844153

  47. Feliu JJ, Feliu V, Cerrada C (1999) Load adaptive control of single-link flexible arms based on a new modeling technique. IEEE Trans Robot Autom 15(5):793–804. https://doi.org/10.1109/70.795785

    Article  Google Scholar 

  48. Feliu V, García A, Somolinos JA (2001) Gauge-based tip position control of a new three-degree-of-freedom flexible robot. Int J Robot Res 20(8):660–675. https://doi.org/10.1177/02783640122067598

    Article  Google Scholar 

  49. Fresonke D, Hernandez E, Tesar D (1988) Deflection prediction for serial manipulators. In: IEEE international conference on robotics and automation, pp 482–487

    Google Scholar 

  50. Geradin M, Cardona A (2001) Flexible multibody dynamics: a finite element approach. John Wiley and Sons, New York

    Google Scholar 

  51. Geradin M, Cardona A, Doan DB, Duysens J (1994) Finite element modeling concepts in multibody dynamics. In: Computer-aided analysis of rigid and flexible mechanical systems, pp 233–284

    Google Scholar 

  52. Greenwood DT (1988) Principles of dynamics. Prentice-Hall of India, New Delhi

    Google Scholar 

  53. Gupta V, Chaudhary H, Saha SK (2015) Dynamics and actuating torque optimization of planar robots. J Mech Sci Technol 29(7):2699–2704. https://doi.org/10.1007/s12206-015-0517-z

    Article  Google Scholar 

  54. Guyan RJ (1965) Reduction of stiffness and mass matrices. AIAA J 3(2):380–380. https://doi.org/10.2514/3.2874

    Article  Google Scholar 

  55. Hamper MB, Recuero AM, Escalona JL, Shabana AA (2011) Modeling rail flexibility using finite element and finite segment methods

    Google Scholar 

  56. Hamper MB, Recuero AM, Escalona JL, Shabana AA (2012) Use of finite element and finite segment methods in modeling rail flexibility: a comparative study. J Comput Nonlinear Dyn 7(4)

    Google Scholar 

  57. Haug EJ (1989) Computer aided kinematics and dynamics of mechanical systems. Basic methods, vol 1. Allyn & Bacon, Inc.

    Google Scholar 

  58. Hemami H, Weimer F (1981) Modeling of nonholonomic dynamic systems with applications. In: American Society of Mechanical Engineers and American Society of Civil Engineers, Joint Applied Mechanics, Fluids Engineering, and Bioengineering Conference, University of Colorado, Boulder, CO

    Google Scholar 

  59. Hollerbach JM (1980) A recursive lagrangian formulation of maniputator dynamics and a comparative study of dynamics formulation complexity. IEEE Trans Syst Man Cybern 10(11):730–736

    Article  Google Scholar 

  60. Hurty WC (1965) Dynamic analysis of structural systems using component modes. AIAA J 3(4):678–685. https://doi.org/10.2514/3.2947

    Article  Google Scholar 

  61. Huston RL (1991) Multibody dynamics-modeling and analysis methods. Appl Mech Rev 44(3):109–117

    Article  Google Scholar 

  62. Huston RL, Passerello CE (1974) On constraint equations-a new approach. ASME J Appl Mech 41:1130–1131

    Article  Google Scholar 

  63. Hwang YL (2005) A new approach for dynamic analysis of flexible manipulator systems. Int J Non-Linear Mech 40(6):925–938. https://doi.org/10.1016/j.ijnonlinmec.2004.12.001

  64. Ider SK (1990) Stability analysis of constraints in flexible multibody systems dynamics. Int J Eng Sci 28(12):1277–1290

    Article  MathSciNet  MATH  Google Scholar 

  65. Iura M, Atluri S (1995) Dynamic analysis of planar flexible beams with finite rotations by using inertial and rotating frames. Comput Struct 55(3):453–462

    Article  MATH  Google Scholar 

  66. Jain A, Rodriguez G (1992) Recursive flexible multibody system dynamics using spatial operators. J Guid Control Dyn 15(6):1453–1466

    Article  MATH  Google Scholar 

  67. Jain A, Rodriguez G (2000) Sensitivity analysis for multibody systems using spatial operators. In: International conference (VI) on methods and models in automation and robotics, pp 30–31

    Google Scholar 

  68. Jain A, Rodriguez G (2003) Multibody mass matrix sensitivity analysis using spatial operators. Int J Multiscale Comput Eng 1(2–3)

    Google Scholar 

  69. Kamman JW, Huston RL (1984) Dynamics of constrained multibody systems. J Appl Mech, Trans ASME 51(4):899–903

    Article  MATH  Google Scholar 

  70. Kane TR, Levinson DA (1983) The use of Kane’s dynamical equations in robotics. Int J Robot Res 2(3):3–21

    Article  Google Scholar 

  71. Khan WA, Krovi VN, Saha SK, Angeles J (2005) Modular and recursive kinematics and dynamics for parallel manipulators. Multibody Sys Dyn 14(3–4):419–455

    Article  MathSciNet  MATH  Google Scholar 

  72. Khatib O (1987) A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J Robot Autom 3(1):43–53. https://doi.org/10.1109/jra.1987.1087068

    Article  Google Scholar 

  73. Kim SS, Haug EJ (1988) A recursive formulation for flexible multibody dynamics, part I: open-loop systems. Comput Meth Appl Mech Eng 71(3):293–314

    Article  MATH  Google Scholar 

  74. Kim SS, Vanderploeg MJ (1986) A General and efficient method for dynamic analysis of mechanical systems using velocity transformations. J Mech Trans Autom Des 108(2):176–182

    Article  Google Scholar 

  75. King JO, Gourishankar VG, Rink RE (1987) Lagrangian dynamics of flexible manipulators using angular velocities instead of transformation matrices. IEEE Trans Syst Man Cybern 17(6):1059–1068. https://doi.org/10.1109/TSMC.1987.6499316

    Article  MATH  Google Scholar 

  76. Koul M, Shah SV, Saha SK, Manivannan M (2014) Reduced-order forward dynamics of multiclosed-loop systems. Multibody Syst Dyn 31(4):451–476. https://doi.org/10.1007/s11044-013-9379-2

    Article  MathSciNet  MATH  Google Scholar 

  77. Li C-J, Sankar TS (1993) Systematic methods for efficient modeling and dynamics computation of flexible robot manipulators. IEEE Trans Syst Man Cybern 23(1):77–94

    Article  MathSciNet  MATH  Google Scholar 

  78. Lim H, Taylor RL (2001) An explicit–implicit method for flexible–rigid multibody systems. Finite Elem Anal Des 37(11):881–900

    Article  MATH  Google Scholar 

  79. Lin S-T, Huang J-N (2002) Stabilization of Baumgarte’s method using the Runge-Kutta approach. J Mech Des 124(4):633–641

    Article  Google Scholar 

  80. Luh JYS, Walker MW, Paul RPC (1980) On-line computational scheme for mechanical manipulators. J Dyn Syst, Meas Control, Trans ASME 102(2):69–76

    Article  MathSciNet  Google Scholar 

  81. Mani N, Haug E, Atkinson K (1984) Application of singular value decomposition for analysis of mechanical system dynamics. J Mech Trans Autom Des 107(1):82–87

    Article  Google Scholar 

  82. Martins JM, Miguel AB, da Costa J (2003) On the formulation of flexible multibody systems with constant mass matrix. In: Proceedings of the 9th ECCOMAS thematic conference on multibody dynamics, Lisbon, July 1–4

    Google Scholar 

  83. Mavroidis C, Rowe P, Dubowsky S (1995) Inferred end-point control of long reach manipulators. In: Proceedings 1995 IEEE/RSJ international conference on intelligent robots and systems. Human robot interaction and cooperative robots, 5–9, vol 72, pp 71–76. https://doi.org/10.1109/IROS.1995.526141

  84. McPhee JJ (1996) On the use of linear graph theory in multibody system dynamics. Nonlinear Dyn 9(1):73–90

    Article  Google Scholar 

  85. Meirovitch L (1967) Analytical methods in vibration. The Mcmillan Company, New York, NY

    MATH  Google Scholar 

  86. Midha A, Erdman AG, Frohrib DA (1978) Finite element approach to mathematical modeling of high-speed elastic linkages. Mech Mach Theory 13(6):603–618. https://doi.org/10.1016/0094-114X(78)90028-9

    Article  Google Scholar 

  87. Mingli B, Dong Hua Z, Schwarz H (1999) Identification of generalized friction for an experimental planar two-link flexible manipulator using strong tracking filter. IEEE Trans Robot Autom 15(2):362–369. https://doi.org/10.1109/70.760359

    Article  Google Scholar 

  88. Mohan A (2007) Dynamic analysis of flexible multibody robotic systems. IIT, Delhi

    Google Scholar 

  89. Mohan A, Saha SK (2007) A recursive, numerically stable, and efficient simulation algorithm for serial robots. Multibody Sys Dyn 17(4):291–319

    Article  MathSciNet  MATH  Google Scholar 

  90. Mohan A, Saha SK (2009) A recursive, numerically stable, and efficient simulation algorithm for serial robots with flexible links. Multibody Sys Dyn 21(1):1–35

    Article  MathSciNet  MATH  Google Scholar 

  91. Naganathan G, Soni AH (1987) Coupling effects of kinematics and flexibility in manipulators. Int J Robot Res 6(1):75–84. https://doi.org/10.1177/027836498700600106

    Article  Google Scholar 

  92. Nagarajan S, Turcic DA (1990) Lagrangian formulation of the equations of motion for elastic mechanisms with mutual dependence between rigid body and elastic motions: part I—element level equations. J Dyn Syst Meas Contr 112(2):203–214. https://doi.org/10.1115/1.2896127

    Article  Google Scholar 

  93. Nagarajan S, Turcic DA (1990) Lagrangian formulation of the equations of motion for elastic mechanisms with mutual dependence between rigid body and elastic motions: part II—system equations. J Dyn Syst Meas Contr 112(2):215–224

    Article  Google Scholar 

  94. Neto MA, Ambrôsio J (2003) Stabilization methods for the integration of DAE in the presence of redundant constraints. Multibody Sys Dyn 10(1):81–105

    Article  MathSciNet  MATH  Google Scholar 

  95. Nikravesh PE (1988) Computer-aided analysis of mechanical systems. Prentice-Hall Englewood Cliffs, New Jersey

    Google Scholar 

  96. Park FC, Bobrow JE, Ploen S (1995) A Lie group formulation of robot dynamics. Int J Robot Res 14(6):609–618

    Article  Google Scholar 

  97. Pascal M (2005) Dynamics and stability of a two degree of freedom oscillator with an elastic stop. J Comput Nonlinear Dyn 1(1):94–102. https://doi.org/10.1115/1.1961873

    Article  Google Scholar 

  98. Paul B (1975) Analytical dynamics of mechanisms—a computer oriented overview. Mech Mach Theory 10(6):481–507. https://doi.org/10.1016/0094-114X(75)90005-1

    Article  Google Scholar 

  99. Queiroz MSd, Dawson DM, Agarwal M, Zhang F (1999) Adaptive nonlinear boundary control of a flexible link robot arm. IEEE Trans Robot Autom 15(4):779–787. https://doi.org/10.1109/70.782034

    Article  Google Scholar 

  100. Roberson RE, Schwertassek R (1988) Dynamics of multibody systems, vol 18. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  101. Ryu J, Sung-Soo K, Sang-Sup K (1992) An efficient computational method for dynamic stress analysis of flexible multibody systems. Comput Struct 42(6):969–977

    Article  MATH  Google Scholar 

  102. Saha SK (1997) A decomposition of the manipulator inertia matrix. IEEE Trans Robot Autom 13(2):301–304

    Article  Google Scholar 

  103. Saha SK (1999) Analytical expression for the inverted inertia matrix of serial robots. Int J Robot Res 18(1):116–124

    Google Scholar 

  104. Saha SK (1999) Dynamics of serial multibody systems using the decoupled natural orthogonal complement matrices. J Appl Mech, Trans ASME 66(4):986–995

    Article  Google Scholar 

  105. Saha SK (2003) Simulation of industrial manipulators based on the UDUT decomposition of inertia matrix. Multibody Sys Dyn 9(1):63–85

    Article  MATH  Google Scholar 

  106. Saha SK, Angeles J (1991) Dynamics of nonholonomic mechanical systems using a natural orthogonal complement. J Appl Mech, Trans ASME 58(1):238–243

    Article  MATH  Google Scholar 

  107. Saha SK, Schiehlen WO (2001) Recursive kinematics and dynamics for parallel structured closed-loop multibody systems. Mech Struct Mach 29(2):143–175

    Article  Google Scholar 

  108. Saha SK, Shah SV, Nandihal PV (2013) Evolution of the DeNOC-based dynamic modeling for multibody systems. Mech Sci 4(1):1–20. https://doi.org/10.5194/ms-4-1-2013

    Article  Google Scholar 

  109. Schiehlen W (1990) Multibody systems handbook. Springer-Verlag, New York Inc., New York, NY (USA)

    Book  MATH  Google Scholar 

  110. Schiehlen W (1997) Multibody system dynamics: roots and perspectives. Multibody Sys Dyn 1(2):149–188

    Article  MathSciNet  MATH  Google Scholar 

  111. Shabana A (2001) Computational dynamics. Wiley-Interscience

    MATH  Google Scholar 

  112. Shabana AA (1990) Dynamics of flexible bodies using generalized Newton-Euler equations. J Dyn Syst, Meas Control, Trans ASME 112(3):496–503

    Article  MATH  Google Scholar 

  113. Shabana AA (1997) Flexible multibody dynamics: review of past and recent developments. Multibody Sys Dyn 1(2):189–222

    Article  MathSciNet  MATH  Google Scholar 

  114. Shabana AA (2005) Dynamics of multibody systems. Cambridge University Press

    Book  MATH  Google Scholar 

  115. Shabana AA, Wehage RA (1983) Coordinate reduction technique for dynamic analysis of spatial substructures with large angular rotations. J Struct Mech 11(3):401–431

    Article  Google Scholar 

  116. Shah S, Saha S, Dutt J (2011) Modular framework for dynamic modeling and analyses of legged robots. Mech Mach Theory

    Google Scholar 

  117. Shah SV, Nandihal PV, Saha SK (2012) Recursive dynamics simulator (ReDySim): a multibody dynamics solver. Theor Appl Mech Lett 2(6):14–063011. https://doi.org/10.1063/2.1206311

    Article  Google Scholar 

  118. Sharf I (1999) Nonlinear strain measures, shape functions and beam elements for dynamics of flexible beams. Multibody Sys Dyn 3(2):189–205

    Article  MathSciNet  MATH  Google Scholar 

  119. Sharf I, Damaren C (1992) Simulation of flexible-link manipulators: basis functions and nonlinear terms in the motion equations, pp 1956–1962

    Google Scholar 

  120. Shim HS, Sung YG (2004) Stability and four-posture control for nonholonomic mobile robots. IEEE Trans Robot Autom 20(1):148–154

    Article  Google Scholar 

  121. Shyu YJ, Gill KF (1997) Dynamic modelling of planar flexible manipulators: computational and algorithmic efficiency. Proc Inst Mech Eng C J Mech Eng Sci 211(2):119–133. https://doi.org/10.1243/0954406971521700

    Article  Google Scholar 

  122. Sousa PJ, Barros F, Tavares PJ, Moreira PMGP (2019) Displacement analysis of rotating RC helicopter blade using coupled CFD-FEA simulation and digital image correlation. Procedia Struct Integrity 17:812–821. https://doi.org/10.1016/j.prostr.2019.08.108

  123. Stanway J, Sharf I, Damaren C (1996) Validation of a dynamics simulation for a structurally flexible manipulator. In: Proceedings of IEEE international conference on robotics and automation, 22–28 April 1996, vol 1953, pp 1959–1965. https://doi.org/10.1109/ROBOT.1996.506159

  124. Stejskal V, Valášek M (1996) Kinematics and dynamics of machinery. M. Dekker

    Google Scholar 

  125. Stewart GW (1973) Introduction to matrix computations. Academic Press

    MATH  Google Scholar 

  126. Stieber ME, McKay M, Vukovich G, Petriu E (1999) Vision-based sensing and control for space robotics applications. IEEE Trans Instrum Meas 48(4):807–812. https://doi.org/10.1109/19.779178

    Article  Google Scholar 

  127. Stokes A, Brockett R (1996) Dynamics of kinematic chains. Int J Robot Res 15(4):393–405

    Article  Google Scholar 

  128. Surdilović D, Vukobratović M (1996) One method for efficient dynamic modeling of flexible manipulators. Mech Mach Theory 31(3):297–315

    Article  Google Scholar 

  129. Theodore RJ, Ghosal A (1995) Comparison of the assumed modes and finite element models for flexible multilink manipulators. Int J Robot Res 14(2):91–111

    Article  Google Scholar 

  130. Thompson B, Sung C (1986) A survey of finite element techniques for mechanism design. Mech Mach Theory 21(4):351–359

    Article  Google Scholar 

  131. Usoro PB, Nadira R, Mahil SS (1986) Finite element/Lagrange approach to modeling lightweight flexible manipulators. J Dyn Syst, Meas Control, Trans ASME 108(3):198–205

    Article  MATH  Google Scholar 

  132. Walker MW, Orin DE (1982) Efficient dynamic computer simulation of robotic mechanisms. J dyn syst meas control trans asme 104(3):205–211

    Article  MATH  Google Scholar 

  133. Wang D, Meng M, Liu Y (1999) Influence of shear, rotary inertia on the dynamic characteristics of flexible manipulators. In: IEEE pacific rim conference on communications, computers and signal processing, pp 615–618

    Google Scholar 

  134. Wasfy TM, Noor AK (2003) Computational strategies for flexible multibody systems. Appl Mech Rev 56(6):553–613

    Article  Google Scholar 

  135. Wehage RA, Haug EJ (1982) Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J Mech Des 104(1):247–255

    Google Scholar 

  136. Wittenburg J (1977) Dynamics of systems of rigid bodies. Teubner Stuttgart

    Google Scholar 

  137. Yoshikawa T, Hosoda K (1996) Modeling of flexible manipulators using virtual rigid links and passive joints. Int J Robot Res 15(3):290–299

    Article  Google Scholar 

  138. Znamenáček J, Valášek M (1998) An efficient implementation of the recursive approach to flexible multibody dynamics. Multibody Sys Dyn 2(3):227–251

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramanand Vivekanand Nandihal .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nandihal, P.V., Mohan, A., Saha, S.K. (2022). Introduction. In: Dynamics of Rigid-Flexible Robots and Multibody Systems. Intelligent Systems, Control and Automation: Science and Engineering, vol 100. Springer, Singapore. https://doi.org/10.1007/978-981-16-2798-9_1

Download citation

Publish with us

Policies and ethics