Skip to main content

Evolution Towards Theranostics: Basic Principles

  • Chapter
  • First Online:
BioSensing, Theranostics, and Medical Devices

Abstract

Nanotherapeutics have revolutionized healthcare research by offering numerous advantages over conventional modalities of treatment. They have shown excellent potential in the treatment of a myriad of diseases and infections. Perhaps the most attractive feature of some of the metallic nanomaterials is their ability to provide contrast while achieving therapeutic efficiency. This property enables simultaneous computer-tomography (CT) or magnetic resonance imaging (MRI) aided diagnosis and treatment. Therefore, such materials are often termed as “theranostic” materials. They are widely studied and synthesized with dozens of customizations for point-of-care diagnostics and therapeutics. Due to the peculiar phenomenon they exhibit, called enhanced permeability and retention effect, they can selectively concentrate in the tumor, achieving high therapeutic efficiency. The particles can also be decorated with path-guiding molecules like antibodies and aptamers, which selectively target cells and tissues. Apart from these passive and active modes of targeting, in some cases, physical targeting of tumors also achieves a similar effect. This not only reduces the toxicity caused by high dosage but also decreases the cost of treatment. Multiple studies utilize different modalities of treatments in a single material. Such multimodal approaches use chemotherapy–immunotherapy, chemotherapy–photothermal therapy, and many combinations of two or more mechanisms to treat diseases. Despite all these advantages, there are some areas of contentions concerning these “smart” materials. The issues of toxicity, stability, and commerciality need to be thoroughly addressed. After cautious evaluation of their physicochemical properties and overcoming limitations, they will serve promising alternatives for conventional drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hood, E. (2004). Nanotechnology: looking as we leap. Environmental Health Perspectives, 112(13), A740. https://doi.org/10.1289/ehp.112-a740.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Silva, G. A. (2004). Introduction to nanotechnology and its applications to medicine. Surgical Neurology, 61(3), 216–220. https://doi.org/10.1016/j.surneu.2003.09.036.

    Article  PubMed  Google Scholar 

  3. Ramanathan, S., et al. (2018). Theranostic applications of nanoparticles in neurodegenerative disorders. International Journal of Nanomedicine, 13, 5561–5576. https://doi.org/10.2147/IJN.S149022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tang, J., Lobatto, M. E., Read, J. C., Mieszawska, A. J., Fayad, Z. A., & Mulder, W. J. M. (2011). Nanomedical theranostics in cardiovascular disease. Current Cardiovascular Imaging Reports, 5(1), 19–25. https://doi.org/10.1007/s12410-011-9120-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ma, Q., & Lu, A. Y. H. (June 2011). Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacological Reviews, 63(2), 437–459. https://doi.org/10.1124/pr.110.003533.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, A. Z., Langer, R., & Farokhzad, O. C. (2012). Nanoparticle delivery of cancer drugs. Annual Review of Medicine, 63(1), 185–198. https://doi.org/10.1146/annurev-med-040210-162544.

    Article  CAS  PubMed  Google Scholar 

  7. Landais, P., et al. (May 2009). Evaluation and validation of diagnostic tests for guiding therapeutic decisions. Thérapie, 64(3), 195–201. https://doi.org/10.2515/therapie/2009028.

    Article  Google Scholar 

  8. Yordanova, A., et al. (2017). Theranostics in nuclear medicine practice. OncoTargets and Therapy, 10, 4821–4828. https://doi.org/10.2147/OTT.S140671.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gawne, P. J., et al. (2020). PET imaging of liposomal glucocorticoids using 89Zr-oxine: Theranostic applications in inflammatory arthritis. Theranostics, 10(9), 3867–3879. https://doi.org/10.7150/thno.40403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumawat, M. K., et al. (2019). Preparation of graphene oxide-graphene quantum dots hybrid and its application in cancer theranostics. Materials Science and Engineering: C, 103, 109774. https://doi.org/10.1016/j.msec.2019.109774.

    Article  CAS  Google Scholar 

  11. Alexander, A. A., & Jotterand, F. (2014). Market considerations for nanomedicines and theranostic nanomedicines. Cancer Theranostics, 471–491.

    Google Scholar 

  12. Ventola, C. L. Progress in nanomedicine: Approved and investigational nanodrugs. P T, 42(12), 742–755.

    Google Scholar 

  13. Lim, E. K., Kim, T., Paik, S., Haam, S., Huh, Y. M., & Lee, K. (2015). Nanomaterials for theranostics: Recent advances and future challenges. Chemical Reviews, 115(1), 327–394. https://doi.org/10.1021/cr300213b.

    Article  CAS  PubMed  Google Scholar 

  14. Bartlett, G., Antoun, J., & Zgheib, N. K. (2012). Theranostics in primary care: Pharmacogenomics tests and beyond. Expert Review of Molecular Diagnostics, 12(8), 841–855. https://doi.org/10.1586/erm.12.115.

    Article  CAS  PubMed  Google Scholar 

  15. Santhosh Kalash R, Lakshmanan VK, Cho C-S, Park I-K (2016) 4.4 – Theranostics. https://doi.org/10.1016/B978-0-323-37127-8/00012-1

  16. Siest, G., & Schallmeiner, E. (2013). Pharmacogenomics and theranostics in practice: A summary of the Euromedlab-ESPT (the European Society of Pharmacogenomics and Theranostics). EJIFCC, 24(3), 85–859.

    PubMed  Google Scholar 

  17. Haga, S. B. (Sep 2016). Challenges of development and implementation of point of care pharmacogenetic testing. Expert Review of Molecular Diagnostics, 16(9), 949–960. https://doi.org/10.1080/14737159.2016.1211934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Amiri-Dashatan, N., Koushki, M., Abbaszadeh, H.-A., Rostami-Nejad, M., & Rezaei-Tavirani, M. (2018). Proteomics applications in health: Biomarker and drug discovery and food industry. Iranian Journal of Pharmaceutical Research, 17(4), 1523–1536.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Marvell, L. (2017). Implementing the basic principles of biomarker use in oncology nursing: Enhancing knowledge and practice through an elearning module. Canadian Oncology Nursing Journal, 27(4), 401–402.

    PubMed  PubMed Central  Google Scholar 

  20. Mehta, R. L. (2017). Moderator’s view: Patient-centered approaches for optimizing AKI management: The role of kidney biomarkers. Nephrology, Dialysis, Transplantation, 32(3), 419–422. https://doi.org/10.1093/ndt/gfx023.

    Article  CAS  PubMed  Google Scholar 

  21. Jeelani, S., Jagat Reddy, R. C., Maheswaran, T., Asokan, G. S., Dany, A., & Anand, B. (2014). Theranostics: A treasured tailor for tomorrow. Journal of Pharmacy & Bioallied Sciences, 6(1). https://doi.org/10.4103/0975-7406.137249.

  22. Enrico, C. (2018). Nanotheranostics and theranostic nanomedicine for diseases and cancer treatment. In Design of nanostructures for theranostics applications (pp. 41–68). New York: Elsevier.

    Google Scholar 

  23. Quesada-González, D., & Merkoçi, A. (2018). Nanomaterial-based devices for point-of-care diagnostic applications. Chemical Society Reviews, 47(13), 4697–4709. https://doi.org/10.1039/c7cs00837f.

    Article  CAS  PubMed  Google Scholar 

  24. Mura, S., & Couvreur, P. (Oct 2012). Nanotheranostics for personalized medicine. Advanced Drug Delivery Reviews, 64(13), 1394–1416. https://doi.org/10.1016/j.addr.2012.06.006.

    Article  CAS  PubMed  Google Scholar 

  25. Park, J. Y., & Kricka, L. J. Role of nano-and microtechnologies in clinical point-of-care testing. [Online]. www.minimed.com

  26. Kumar, A., et al. (2019). Nanotherapeutics. In Nanotechnology in modern animal biotechnology: Concepts and applications (pp. 149–161). New York: Elsevier.

    Chapter  Google Scholar 

  27. Chandra, P., Tan, Y. N., & Singh, S. P. (2017). Next generation point-of-care biomedical sensors technologies for cancer diagnosis. Singapore: Springer Singapore.

    Book  Google Scholar 

  28. Thakur, M., Kumawat, M. K., & Srivastava, R. (Jan 2017). Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications. RSC Advances, 7(9), 5251–5261. https://doi.org/10.1039/c6ra25976f.

    Article  CAS  Google Scholar 

  29. Chandra, P., & Prakash, R. (2020). Nanobiomaterial engineering: Concepts and their applications in biomedicine and diagnostics. Singapore: Springer Singapore.

    Book  Google Scholar 

  30. Wang, Y., Yu, L., Kong, X., & Sun, L. (2017). Application of nanodiagnostics in point-of-care tests for infectious diseases. International Journal of Nanomedicine, 12, 4789–4803. https://doi.org/10.2147/IJN.S137338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ali, I., et al. (2020). Progress in polymeric nano-medicines for theranostic cancer treatment. Polymers (Basel), 12(3). https://doi.org/10.3390/polym12030598.

  32. Bisht, S., et al. (2010). Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer. Molecular Cancer Therapeutics, 9(8), 2255–2264. https://doi.org/10.1158/1535-7163.MCT-10-0172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, L., et al. (2013). Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia. Journal of Controlled Release, 167(2), 130–137. https://doi.org/10.1016/j.jconrel.2013.01.026.

    Article  CAS  PubMed  Google Scholar 

  34. Yin, H., Liao, L., & Fang, J. (2014). Enhanced permeability and retention (epr) effect based tumor targeting: The concept, application and prospect. JSM Clinical Oncology and Research, 2(1), 1–5.

    CAS  Google Scholar 

  35. Arachchige, M. C. M., Reshetnyak, Y. K., & Andreev, O. A. (2015). Advanced targeted nanomedicine. Journal of Biotechnology, 202, 88–97. https://doi.org/10.1016/j.jbiotec.2015.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: Progress, challenges and opportunities. Nature Reviews. Cancer, 17(1), 20–37. https://doi.org/10.1038/nrc.2016.108.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, W., et al. (2020). Preclinical evaluation of cationic DOTA-triarginine-lipid conjugates for theranostic liquid brachytherapy. Theranostics, 10(3), 142–155. https://doi.org/10.7150/ntno.44562.

    Article  Google Scholar 

  38. Martin, M., Schultz, M., Bushnell, D., Dick, D., Lehman, S., & Project Goals Schema. A Phase II Theranostics Trial: Dosimetry-Guided Peptide Receptor Radiotherapy with Y-DOTA-tyr3-Octreotide (90 Y-DOTATOC ) in Children and Adults with Neuroendocrine and other Somatostatin Receptor Expressing Tumors as determined by 68Ga-DOTA-tyr3 -Octreotide (68Ga-DOTATOC) PET/CT.

    Google Scholar 

  39. Conde, J., Oliva, N., & Artzi, N. (2015). Implantable hydrogel embedded dark-gold nanoswitch as a theranostic probe to sense and overcome cancer multidrug resistance. Proceedings of the National Academy of Sciences of the United States of America, 112(11), E1278–E1287. https://doi.org/10.1073/pnas.1421229112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mak, W. C., Cheung, K. Y., Orban, J., Lee, C. J., Turner, A. P. F., & Griffith, M. (2015). Surface-engineered contact Lens as an advanced theranostic platform for modulation and detection of viral infection. ACS Applied Materials & Interfaces, 7(45), 25487–25494. https://doi.org/10.1021/acsami.5b08644.

    Article  CAS  Google Scholar 

  41. Kang, H., et al. (2020). Renal clearable theranostic nanoplatforms for gastrointestinal stromal tumors. Advanced Materials, 32(6), 1–9. https://doi.org/10.1002/adma.201905899.

    Article  CAS  Google Scholar 

  42. Ferreira, K., et al. (2017). Multivalent Siderophore–DOTAM conjugates as theranostics for imaging and treatment of bacterial infections. Angewandte Chemie, International Edition, 56(28), 8272–8276. https://doi.org/10.1002/anie.201701358.

    Article  CAS  Google Scholar 

  43. Pang, X., et al. (2019). Bacteria-responsive nanoliposomes as smart sonotheranostics for multidrug resistant bacterial infections. ACS Nano, 13(2), 2427–2438. https://doi.org/10.1021/acsnano.8b09336.

    Article  CAS  PubMed  Google Scholar 

  44. Xie, S., et al. (2017). Design and synthesis of theranostic antibiotic nanodrugs that display enhanced antibacterial activity and luminescence. Proceedings of the National Academy of Sciences of the United States of America, 114(32), 8464–8469. https://doi.org/10.1073/pnas.1708556114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, P., Xu, L. Q., Xu, G., Pranantyo, D., Neoh, K. G., & Kang, E. T. (Nov 2018). PH-sensitive theranostic nanoparticles for targeting bacteria with fluorescence imaging and dual-modal antimicrobial therapy. ACS Applied Nano Materials, 1(11), 6187–6196. https://doi.org/10.1021/acsanm.8b01401.

    Article  CAS  Google Scholar 

  46. Woong, S. (2019). In vivo monitoring of theranostic fluorescence bacteria in orthotopic fluorescence endoscopy. Endoscopic Microscopy. https://doi.org/10.1117/12.2509530.

  47. Chen, J., et al. (2020). On-demand storage and release of antimicrobial peptides using Pandora’s box-like nanotubes gated with a bacterial infection-responsive polymer. Theranostics, 10(1). https://doi.org/10.7150/thno.38388.

  48. Xiu, W., et al. (2020). Biofilm microenvironment-responsive nanotheranostics for dual-mode imaging and hypoxia-relief-enhanced photodynamic therapy of bacterial infections. Research. https://doi.org/10.34133/2020/9426453.

  49. Vashist, A., Atluri, V., Raymond, A., Kaushik, A., & Parira, T. (2020). Development of multifunctional biopolymeric auto-fluorescent micro- and nanogels as a platform for biomedical applications. Frontiers in Bioengineering and Biotechnology, 8, 1–16. https://doi.org/10.3389/fbioe.2020.00315.

    Article  Google Scholar 

  50. Lin, B., Liu, J., Wang, Y., Yang, F., Huang, L., & Lv, R. (2020). Enhanced upconversion luminescence-guided synergistic antitumor therapy based on photodynamic therapy and immune checkpoint blockade. Chemistry of Materials. https://doi.org/10.1021/acs.chemmater.0c01031.

  51. Li, Y., Xu, T., Tu, Z., Dai, W., Xue, Y., & Tang, C. (2020). Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high angiogenesis for promoting diabetic wound healing and skin repair. Theranostics, 10(11). https://doi.org/10.7150/thno.41839.

  52. Dhiman, A., et al. (2019). Theranostic application of a novel G-quadruplex-forming DNA aptamer targeting malate synthase of mycobacterium tuberculosis. Molecular Therapy – Nucleic Acids, 18, 661–672.

    Article  CAS  Google Scholar 

  53. Zhai, X., Song, B., Chu, B., Su, Y., Wang, H., & He, Y. (2018). Highly fluorescent, photostable, and biocompatible silicon theranostic nanoprobes against Staphylococcus aureus infections. Nano Research, 11(12), 6417–6427.

    Article  CAS  Google Scholar 

  54. Gujrati, V., et al. (2019). Bioengineered bacterial vesicles as biological nano-heaters for optoacoustic imaging. Nature Communications. https://doi.org/10.1038/s41467-019-09034-y.

  55. Zhang, C., et al. (2014). Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials. https://doi.org/10.1016/j.biomaterials.2013.09.063.

  56. Gupta, M. K., Lee, Y., Boire, T. C., Lee, J. B., Kim, W. S., & Sung, H. J. (2017). Recent strategies to design vascular theranostic nanoparticles. Nano, 1(2), 166–177. https://doi.org/10.7150/ntno.18531.

    Article  Google Scholar 

  57. Yang, T., et al. (2016). Anti-tumor efficiency of lipid-coated cisplatin nanoparticles co-loaded with microRNA-375. Theranostics, 6(1), 142–154. https://doi.org/10.7150/thno.13130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, T., et al. (2016). Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor. ACS Nano, 10(3), 3496–3508. https://doi.org/10.1021/acsnano.5b07706.

    Article  CAS  PubMed  Google Scholar 

  59. He, X., et al. (2019). AIE-based theranostic systems for detection and killing of pathogens. Theranostics, 9(11), 3223–3248. https://doi.org/10.7150/thno.31844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Acharya, G., Mitra, A. K., & Cholkar, K. (2017). Nanosystems for diagnostic imaging, biodetectors, and biosensors. New York: Elsevier.

    Book  Google Scholar 

  61. Kim, H., Chung, K., Lee, S., Kim, D. H., & Lee, H. (2016). Near-infrared light-responsive nanomaterials for cancer theranostics. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 8(1), 23–45. https://doi.org/10.1002/wnan.1347.

    Article  CAS  PubMed  Google Scholar 

  62. García Calavia, P., Bruce, G., Pérez-García, L., & Russell, D. A. (2018). Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochemical & Photobiological Sciences, 17(11), 1534–1552. https://doi.org/10.1039/c8pp00271a.

    Article  CAS  Google Scholar 

  63. Sun, Z., et al. (2013). VEGF-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle. Nanoscale, 5(15). https://doi.org/10.1039/c3nr01573d.

  64. Ben-Akiva, E., Meyer, R. A., Yu, H., Smith, J. T., Pardoll, D. M., & Green, J. J. (2020). Biomimetic anisotropic polymeric nanoparticles coated with red blood cell membranes for enhanced circulation and toxin removal. Science Advances, 6(16). https://doi.org/10.1126/sciadv.aay9035.

  65. Niidome, T., et al. (Sep 2006). PEG-modified gold nanorods with a stealth character for in vivo applications. Journal of Controlled Release, 114(3), 343–347. https://doi.org/10.1016/j.jconrel.2006.06.017.

    Article  CAS  PubMed  Google Scholar 

  66. Jiang, J., Oberdörster, G., Elder, A., Gelein, R., Mercer, P., & Biswas, P. (Jan 2008). Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology, 2(1), 33–42. https://doi.org/10.1080/17435390701882478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Forest, V., Leclerc, L., Hochepied, J.-F., Trouvé, A., Sarry, G., & Pourchez, J. (Feb 2017). Impact of cerium oxide nanoparticles shape on their in vitro cellular toxicity. Toxicology in Vitro, 38, 136–141. https://doi.org/10.1016/j.tiv.2016.09.022.

    Article  CAS  PubMed  Google Scholar 

  68. Lee, J. H., et al. (Dec 2014). Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environmental Toxicology and Chemistry, 33(12), 2759–2766. https://doi.org/10.1002/etc.2735.

    Article  CAS  PubMed  Google Scholar 

  69. Baek, M., et al. (July 2011). Factors influencing the cytotoxicity of zinc oxide nanoparticles: Particle size and surface charge. Journal of Physics Conference Series, 304, 012044. https://doi.org/10.1088/1742-6596/304/1/012044.

    Article  CAS  Google Scholar 

  70. Kai, W., Xiaojun, X., Ximing, P., Zhenqing, H., & Qiqing, Z. (2011). Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells. Nanoscale Research Letters, 6(1), 480. https://doi.org/10.1186/1556-276X-6-480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Karlsson, H. L., Cronholm, P., Gustafsson, J., & Möller, L. (2008). Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology, 21(9), 1726–1732. https://doi.org/10.1021/tx800064j.

    Article  CAS  PubMed  Google Scholar 

  72. Phan, H. T., & Haes, A. J. (July 2019). What does nanoparticle stability mean? Journal of Physical Chemistry C, 123(27), 16495–16507. https://doi.org/10.1021/acs.jpcc.9b00913.

    Article  CAS  Google Scholar 

  73. Cao, G. (2011). Nanostructures and nanomaterials (2nd ed.). London: World Scientific.

    Book  Google Scholar 

  74. Colombo, A. P., Briançon, S., Lieto, J., & Fessi, H. (Jan 2001). Project, design, and use of a pilot plant for nanocapsule production. Drug Development and Industrial Pharmacy, 27(10), 1063–1072. https://doi.org/10.1081/DDC-100108369.

    Article  CAS  PubMed  Google Scholar 

  75. Bosetti, R., & Jones, S. L. (June 2019). Cost–effectiveness of nanomedicine: Estimating the real size of nano-costs. Nanomedicine, 14(11), 1367–1370. https://doi.org/10.2217/nnm-2019-0130.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Shweta Shinde for scientific discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiran, P. et al. (2022). Evolution Towards Theranostics: Basic Principles. In: Borse, V., Chandra, P., Srivastava, R. (eds) BioSensing, Theranostics, and Medical Devices. Springer, Singapore. https://doi.org/10.1007/978-981-16-2782-8_3

Download citation

Publish with us

Policies and ethics