Skip to main content

Triple-Station System of Detecting Small Airborne Objects in Dense Urban Environment

  • Conference paper
  • First Online:
Intelligent Decision Technologies

Abstract

The article discusses the expediency of using distributed radars for higher accuracy of small airborne object trajectory measurement in urban environment. For AO detection, we propose a way of using three radar stations built according to the technology of cascaded active-phased waveguide-slot antenna array: two sector-surveillance radar stations and a circular surveillance one. The article discusses simulation model processes the angular and range data obtained from real experiments. The structural scheme of simulation stages is proposed. Simulation model is designed for choosing the parameters of the systems to be developed and for polishing the algorithms of matching the data from three standalone radar stations with an overlap zone, creating a shared information space. The feature of the proposed system is that it allows you to determine the trajectory coordinates of a UAV-like object in a dense urban environment and to specify and simulate the characteristics of such systems at the development stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahafza, B.R.: Radar Systems Analysis and Design Using MATLAB, vol. 3, p. 743. Chapman and Hall/CRC (2016). Available from: https://doi.org/10.1201/b14904

  2. Shishanov, S.V., Myakinkov, A.V.: The system of the circular review for vehicles based on ultra-wideband sensors. J. Russ. Univ. Radioelectron. 2, 55–61 (2015). (In Russ.)

    Google Scholar 

  3. Gimignani, M., Paparo, M., Rossi, D., Scaccianoce, S.: RF design and technology supporting active safety in automotive applications. In: 2013 IEEE 10th International Conference on ASIC, pp. 1–4. IEEE; (2013). Available from: https://doi.org/10.1109/asicon.2013.6811875

  4. Verba, V.S., Merkulov, V.I. (eds.). Estimation of Range and Speed in Radar Systems, p. 3. M. Radiotechnik (2010). (In Russ.)

    Google Scholar 

  5. Ji, Z., Prokhorov, D.: Radar-vision fusion for object classification. In: 2008 11th International Conference on Information Fusion, pp. 1–7 (2008)

    Google Scholar 

  6. Melvin, W.L., Scheer, J.A.: Principles of Modern Radar vol. II: Advanced Techniques, vol. 2, pp. 2300. Scitech Publishing (2013)

    Google Scholar 

  7. Zaitsev, D.V.: Multi-position radar systems. Methods and algorithms for processing information under interference conditions. Radio Engineering, Moscow (2007). (In Russ.)

    Google Scholar 

  8. Raol J.R. Multi-Sensor Data Fusion with MATLAB, p. 534. CRC, (2009). Available from: https://doi.org/10.1201/9781439800058

  9. Nenashev, V.A., Sentsov, A.A., Shepeta, A.P., Formation of radar image the earth's surface in the front zone review two-position systems airborne radar. In: 2019 Wave Electronics and Its Application in Information and Telecommunication Systems (WECONF), pp. 1-5. Saint-Petersburg, Russia (2019). https://doi.org/10.1109/weconf.2019.8840641

  10. Willow, V.S., Tatarsky, B.G. (eds.): Radar systems for aerospace monitoring of the earth’s surface and airspace, p. 576. Monograph M., Radiotekhnika (2014). (In Russ.)

    Google Scholar 

  11. Nenashev, V.A., Shepeta, A.P.: Accuracy characteristics of object location in a two-position system of small onboard radars. Inf. Control Syst. 2, 31–36 (2020). Available from: http://www.i-us.ru/index.php/ius/article/view/4981

  12. Nenashev, V.A., Kryachko, A.F., Shepeta, A.P., Burylev, D.A.: Features of Information Processing in the Onboard Two-Position Small-Sized Radar based on UAVs, pp. 111970X-1–111970X-7. SPIE Future Sensing Technologies, Tokyo, Japan (2019)

    Google Scholar 

  13. Nenashev, V.A., Sentsov, A.A., Shepeta, A.P.: The problem of determination of coordinates of unmanned aerial vehicles using a two-position system ground radar. In: 2018 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), p. 5. IEEE, (2018). Available from: https://doi.org/10.1109/weconf.2018.8604329

  14. Wang, R., Deng, Y.: Bistatic InSAR. Bistatic SAR System and Signal Processing Technology, pp. 235–275. Springer, Singapore (2017). Available from: https://doi.org/10.1007/978-981-10-3078-9_8

  15. Shepeta A.P., Nenashev V.A.: Modeling algorithm for SAR. In: Proceedings of SPIE Remote Sensing, vol. 9642, pp. 96420X-1–9642OX-8. Toulouse, France (2015). https://doi.org/10.1117/12.2194569

  16. Toro, G.F., Tsourdos, A.: UAV Sensors for Environmental Monitoring, p. 661. MDPI, Belgrade (2018). Available from: https://doi.org/10.3390/books978-3-03842-754-4

  17. Klemm, R. (ed.): Novel Radar Techniques and Applications. Vol 1: Real Aperture Array Radar, Imaging Radar, and Passive and Multistatic Radar, p. 1. Scitech Publishing, London (2017). Available from: https://doi.org/10.1049/sbra512f_pti

  18. Klemm, R. (ed.): Novel Radar Techniques and Applications. Waveform Diversity and Cognitive Radar, and Target Tracking and Data Fusion, p. 2. Scitech Publishing, London (2017)

    Google Scholar 

  19. Sergeev, M.B., Nenashev, V.A., Sergeev, A.M.: Nested code sequences Barker—Mersenne—Raghavarao. Informatsionnoupravliaiushchie sistemy [Information and Control Systems], no. 3, pp. 63–73 (2019). (In Russian). https://doi.org/10.31799/1684-8853-2019-3-63-73

  20. Nenashev, V.A., Sergeev, A.M., Kapranova, E.A.: Research and analysis of autocorrelation functions of code sequences formed on the basis of monocyclic quasi-orthogonal matrices. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], (4), 9–14 (2018). https://doi.org/10.31799/1684-8853-2018-4-9-14

  21. Sergeev, A.M., Nenashev, V.A., Vostrikov, A.A., Shepeta, A.P., Kurtyanik, D.V.: Discovering and analyzing binary codes based on monocyclic quasi-orthogonal matrices. In: Czarnowski, I., Howlett, R., Jain, L. (eds.) Intelligent Decision Technologies 2019. Smart Innovation, Systems and Technologies, vol 143, pp 113–123. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-8303-8_10

  22. Sergeev, M.B., Nenashev, V.A., et al.: Baza dannyh harakteristik bespilotnyh letatel'nyh sistem vertoletnogo tipa [Database of characteristics of unmanned aerial systems of helicopter type]. Sertificate of state registration no. 2020621680 (2020)

    Google Scholar 

  23. Nenashev, V.A., et al.: Baza dannyh harakteristik bespilotnyh letatel'nyh sistem samoletnogo tipa [Database of characteristics of unmanned aerial systems of aircraft type]. Sertificate of state registration no. 2020621745 (2020). 25 Sep 2020

    Google Scholar 

  24. Sergeev, M.B., Nenashev, V.A., et al.: Baza dannyh harakteristik bespilotnyh letatel'nyh sistem mul'tikopternogo tipa [Database of characteristics of unmanned aerial systems of multicopter type]. Sertificate of state registration no. 2020621745, (2020)

    Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR, project number 19-29-06029.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sergeev, M., Sentsov, A., Nenashev, V., Grigoriev, E. (2021). Triple-Station System of Detecting Small Airborne Objects in Dense Urban Environment. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds) Intelligent Decision Technologies. Smart Innovation, Systems and Technologies, vol 238. Springer, Singapore. https://doi.org/10.1007/978-981-16-2765-1_7

Download citation

Publish with us

Policies and ethics