Skip to main content

Comparative Analysis of a Dopingless Tunnel FET and MOSFET-Based Current Mirror

  • Conference paper
  • First Online:
Recent Trends in Electronics and Communication (VCAS 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 777))

Included in the following conference series:

Abstract

Basic current mirror (BCM) is made by using the novel Dopingless TFET (DLTFET) and compared with different MOSFET technologies-based BCM in this paper. Current mirrors (CMs) are generally used to make the constant current source, which means it requires a device that must produce a steady current in the saturation region, and DLTFET is one of the devices. BCM circuit is simulated by using 20 nm DLTFET and 22, 32, and 45 nm MOSFET and is compared on the basis of accuracy, off-current, output impedance, input impedance, and the bandwidth. DLTFET-based BCM performance is better than the others because it is more accurate (current error ≈ 0). Its input impedance is 99.99% lesser than the others, and its output impedance is 99.96% greater than the others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.Y. Choi, B. Park, J.D. Lee, T.K. Liu, Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007). https://doi.org/10.1109/LED.2007.901273

    Article  Google Scholar 

  2. P.F. Wang, K. Hilsenbeck, T. Nirschl, M. Oswald, C. Stepper, M. Weis, D. Schmitt-Landsiedel, W. Hansch, Complementary tunneling transistor for low power application. Sold-state Electron. 48(12), 2281–2286 (2004). https://doi.org/10.1016/j.sse.2004.04.006

    Article  Google Scholar 

  3. A. Asenov, A.R. Brown, J.H. Davies, S. Kaya, G. Slavcheva, Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs. IEEE Trans. Electron Devices 50(9), 1837–1852 (2003). https://doi.org/10.1109/TED.2003.815862

    Article  Google Scholar 

  4. C. Shin, X. Sun, T.K. Liu, Study of random-dopant-fluctuation (RDF) effects for the Trigate bulk MOSFET. IEEE Trans. Electron Devices 56(7), 1538–1542 (2009). https://doi.org/10.1109/TED.2009.2020321

    Article  Google Scholar 

  5. R. Jhaveri, V. Nagavarapu, J.C.S. Woo, Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans. Electron Devices 58(1), 80–86 (2011). https://doi.org/10.1109/TED.2010.2089525

    Article  Google Scholar 

  6. C. Le Royer, F. Mayer, Exhaustive experimental study of tunnel field effect transistors (TFETs): From materials to architecture, in 2009 10th International Conference on Ultimate Integration of Silicon, Aachen (2009), pp. 53–56 https://doi.org/10.1109/ULIS.2009.4897537

  7. D. Leonelli, A. Vandooren, R. Rooyackers, S. De Gendt, M.M. Heyns, G. Groeseneken, Optimization of tunnel FETs: Impact of gate oxide thickness, implantation and annealing conditions, in 2010 Proceedings of the European Solid State Device Research Conference, Sevilla (2010), pp. 170–173. https://doi.org/10.1109/ESSDERC.2010.5618408

  8. M.J. Kumar, S. Janardhanan, Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013). https://doi.org/10.1109/TED.2013.2276888

    Article  Google Scholar 

  9. N. Damrongplasit, C. Shin, S.H. Kim, R.A. Vega, T. King Liu, Study of random dopant fluctuation effects in germanium-source tunnel FETs, in IEEE Transactions on Electron Devices, vol. 58, no. 10 (Oct 2011), pp. 3541–3548 https://doi.org/10.1109/TED.2011.2161990

  10. N. Damrongplasit, S.H. Kim, T.K. Liu, Study of random dopant fluctuation induced variability in the raised-Ge-source TFET. IEEE Electron Device Lett. 34(2), 184–186 (2013). https://doi.org/10.1109/LED.2012.2235404

    Article  Google Scholar 

  11. N. Sharma, S.S. Chauhan, Dual metal drain Ge-source dopingless TFET with enhanced turn-ON steep subthreshold swing and high ON-current, in Electronics Letters, vol. 53, no. 14 6(7) (2017), pp. 960–962. https://doi.org/10.1049/el.2017.0157

  12. K. Nigam, S. Pandey, P.N. Kondekar, D. Sharma, P. Kumar Parte, A barrier controlled charge plasma-based TFET with gate engineering for ambipolar suppression and RF/linearity performance improvement, in IEEE Transactions on Electron Devices, vol. 64, no. 6 (June 2017), pp. 2751–2757. https://doi.org/10.1109/TED.2017.2693679

  13. D.S. Yadav et al., Performance investigation of hetero material (InAs/Si)-based charge plasma TFET, in Micro & Nano Letters, vol. 12, no. 6 (June 2017), pp. 358–363. https://doi.org/10.1049/mnl.2016.0688

  14. M. Haris, S.A. Loan, An ambipolar immune Si/GaAs hetero-junction doping-less TFET, in 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), Vellore (2017), pp. 1–4. https://doi.org/10.1109/ICMDCS.2017.8211539

  15. A. Verma, S. Sharma, S. Bharti, M. Bharti, B. Kaur, Design of tunnel junction engineered dopingless TFET for low power application, in The 21st International Symposium on Quality Electronic Design (2020), pp. 1–6

    Google Scholar 

  16. S. Sedra, K.C. Smith, Microelectronics Circuits Theory and Applications, 5th edn. (Oxford University Press, New York, 2009)

    Google Scholar 

  17. R.C. Jaeger, T.N. Blalock, Microelectronic Circuit Design (McGraw-Hill, New York, 2011)

    Google Scholar 

  18. P.E. Allen, D.R. Holberg, CMOS Analog Circuit Design, 2nd edn. (Oxford University Press, United Kingdom, 2011)

    Google Scholar 

  19. A.N. Laskovski, Biomedical Engineering Trends in Electronics, Communications and Software (Published by InTech, Rijeka, Croatia, 2011)

    Book  Google Scholar 

  20. L. Tanguay, M. Sawan, Y. Savaria, A very-high output impedance current mirror for very-low voltage biomedical analog circuits, in APCCAS 2008—2008 IEEE Asia Pacific Conference on Circuits and Systems, Macao (2008), pp. 642–645. https://doi.org/10.1109/APCCAS.2008.4746105

  21. R. Gupta, A.K. Rana, Study of CNTFET based basic current mirror in comparison with NMOS technologies, in 2013 International Conference on Advanced Computing and Communication Systems, Coimbatore (2013), pp. 1–6. https://doi.org/10.1109/ICACCS.2013.6938695

Download references

Acknowledgements

According to the reference letter No. 9(1)2014-MDD (NIT Delhi, INDIA), SMDP-C2SD supports this project.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nath, H., Sharma, S., Verma, A., Kaur, B. (2022). Comparative Analysis of a Dopingless Tunnel FET and MOSFET-Based Current Mirror. In: Dhawan, A., Tripathi, V.S., Arya, K.V., Naik, K. (eds) Recent Trends in Electronics and Communication. VCAS 2020. Lecture Notes in Electrical Engineering, vol 777. Springer, Singapore. https://doi.org/10.1007/978-981-16-2761-3_79

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2761-3_79

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2760-6

  • Online ISBN: 978-981-16-2761-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics