Skip to main content

Rigid–Flexible Block Molecule-Based Nanotubes

  • Chapter
  • First Online:
Smart Soft-Matter Nanotubes

Part of the book series: Nanostructure Science and Technology ((NST))

  • 319 Accesses

Abstract

Rigid–flexible block molecule (RFBM) is a kind of amphiphilic molecule and roughly comprises both hydrophobic, rigid rod-like segments and hydrophilic, flexible coil-like segments. For example, oligo (p-phenylene) and perylenediimide are employed as the rod segments, whereas poly(ethylene oxide) and poly(propylene oxide) as the flexible chains. This chapter addresses the supramolecular self-assembly of the RFBMs into tubular structures. For example, the self-assembly of perylene diimide-derived amphiphiles, perylene diimide–peptide conjugates, amphiphilic porphyrin, porphrin–C60 amphiphile dyad, amphiphilic carbocyanine dye is discussed in terms of their structural characteristics and potent functions. Moreover, the author describes unique self-assembly behavior of hexa-peri-hexabenzocoronene derivatives that are well-known as one of two-dimensional small-sized graphene molecules. The author also introduces the osmosis-responsive formation of vesicle-encapsulated nanotube structures from thioxanthene-derived amphiphile in the coexistence of an unsaturated phospholipid. Supramolecular self-assembly of rosette-type organic nanotubes from pyrimido pyrimidine derivatives is discussed in terms of functionalization strategy of the rosette nanotubes. In the last part of this chapter, the dynamic morphology switching of nanotube structures self-assembled from bent-shaped aromatic or cyclic aromatic amphiphiles, and nanotube formation from boroxine and trimesic acid derivatives are described in terms of molecular arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim HJ, Kim T, Lee M (2011) Responsive nanostructures from aqueous assembly of rigid-flexible block molecules. Acc Chem Res 44:72–82. https://doi.org/10.1021/ar100111n

    Article  CAS  Google Scholar 

  2. Yang WY, Lee E, Lee M (2006) Tubular organization with coiled ribbon from amphiphilic rigid-flexible macrocycle. J Am Chem Soc 128:3484–3485. https://doi.org/10.1021/ja057823e

    Article  CAS  Google Scholar 

  3. Ryu JH, Kim HJ, Huang ZG, Lee E, Lee M (2006) Self-assembling molecular dumbbells: From nanohelices to nanocapsules triggered by guest intercalation. Angew Chem Int Ed 45:5304–5307. https://doi.org/10.1002/anie.200600971

    Article  CAS  Google Scholar 

  4. Zang L, Che Y, Moore JS (2008) One-dimensional self-assembly of planar π-conjugated molecules: adaptable building blocks for organic nanodevices. Acc Chem Res 41:1596–1608. https://doi.org/10.1021/ar800030w

    Article  CAS  Google Scholar 

  5. Ma X, Zhang Y, Zheng Y, Zhang Y, Tao X, Che Y, Zhao J (2015) Highly fluorescent one-handed nanotubes assembled from a chiral asymmetric perylene diimide. Chem Commun 51:4231–4233. https://doi.org/10.1039/c5cc00365b

    Article  CAS  Google Scholar 

  6. Yue E, Ma X, Zhang Y, Zhang Y, Duan R, Ji H, Li J, Che Y, Zhao J (2014) Fluorescent bilayer nanocoils assembled from an asymmetric perylene diimide molecule with ultrasensitivity for amine vapors. Chem Commun 50:13596–13599. https://doi.org/10.1039/c4cc06915c

    Article  Google Scholar 

  7. Peng C, Zhang Y, Zhang Y, Hu Y, Che Y, Zhao J (2016) Highly fluorescent nanotubes with tunable diameter and wall thickness self-assembled from asymmetric perylene diimides. Small 12:4363–4369. https://doi.org/10.1002/smll.201601073

    Article  CAS  Google Scholar 

  8. Hu Y, Ma X, Zhang Y, Che Y, Zhao J (2016) Detection of amines with fluorescent nanotubes: applications in the assessment of meat spoilage. Acs Sensors 1:22–25. https://doi.org/10.1021/acssensors.5b00040

    Article  CAS  Google Scholar 

  9. Tidhar Y, Weissman H, Wolf SG, Gulino A, Rybtchinski B (2011) Pathway-dependent self-assembly of perylene diimide/peptide conjugates in aqueous medium. Chem Eur J 17:6068–6075. https://doi.org/10.1002/chem.201003419

    Article  CAS  Google Scholar 

  10. Rodler F, Schade B, Jager CM, Backes S, Hampel F, Bottcher C, Clark T, Hirsch A (2015) Amphiphilic Perylene-Calix[4]arene hybrids: synthesis and tunable self-assembly. J Am Chem Soc 137:3308–3317. https://doi.org/10.1021/ja512048t

    Article  CAS  Google Scholar 

  11. Huber V, Sengupta S, Wurthner F (2008) Structure-property relationships for self-assembled zinc chlorin light-harvesting dye aggregates. Chem Eur J 14:7791–7807. https://doi.org/10.1002/chem.200800764

    Article  CAS  Google Scholar 

  12. Sengupta S, Ebeling D, Patwardhan S, Zhang X, von Berlepsch H, Bottcher C, Stepanenko V, Uemura S, Hentschel C, Fuchs H, Grozema FC, Siebbeles LDA, Holzwarth AR, Chi L, Wurthner F (2012) Biosupramolecular nanowires from chlorophyll dyes with exceptional charge-transport properties. Angew Chem Int Ed 51:6378–6382. https://doi.org/10.1002/anie.201201961

    Article  CAS  Google Scholar 

  13. Patwardhan S, Sengupta S, Siebbeles LDA, Wurthner F, Grozema FC (2012) Efficient charge transport in semisynthetic zinc chlorin dye assemblies. J Am Chem Soc 134:16147–16150. https://doi.org/10.1021/ja3075192

    Article  CAS  Google Scholar 

  14. Yamamoto Y (2011) Electroactive nanotubes from π-conjugated discotic molecules. Bull Chem Soc Jpn 84:17–25. https://doi.org/10.1246/bcsj.20100272

    Article  CAS  Google Scholar 

  15. Hizume Y, Tashiro K, Charvet R, Yamamoto Y, Saeki A, Seki S, Aida T (2010) Chiroselective assembly of a chiral porphyrin-fullerene dyad: photoconductive nanofiber with a top-class ambipolar charge-carrier mobility. J Am Chem Soc 132:6628–6629. https://doi.org/10.1021/ja1014713

    Article  CAS  Google Scholar 

  16. Charvet R, Yamamoto Y, Sasaki T, Kim J, Kato K, Takata M, Saeki A, Seki S, Aida T (2012) Segregated and alternately stacked donor/acceptor nanodomains in tubular morphology tailored with zinc porphyrin–C60 amphiphilic dyads: clear geometrical effects on photoconduction. J Am Chem Soc 134:2524–2527. https://doi.org/10.1021/Ja211334k

    Article  CAS  Google Scholar 

  17. Li ZQ, Zhang YM, Chen Y, Liu Y (2014) A supramolecular tubular nanoreactor. Chem Eur J 20:8566–8570. https://doi.org/10.1002/chem.201402612

    Article  CAS  Google Scholar 

  18. Didraga C, Pugzlys A, Hania PR, von Berlepsch H, Duppen K, Knoester J (2004) Structure, spectroscopy, and microscopic model of tubular carbocyanine dye aggregates. J Phys Chem B 108:14976–14985. https://doi.org/10.1021/jp048288s

    Article  CAS  Google Scholar 

  19. Eisele DM, Berlepsch HV, Bottcher C, Stevenson KJ, Bout DAV, Kirstein S, Rabe JP (2010) Photoinitiated growth of sub-7 nm silver nanowires within a chemically active organic nanotubular template. J Am Chem Soc 132:2104–2105. https://doi.org/10.1021/Ja907373h

    Article  CAS  Google Scholar 

  20. Walker EK, Vanden Bout DA, Stevenson KJ (2011) Aqueous electrogenerated chemiluminescence of self-assembled double-walled tubular j-aggregates of amphiphilic cyanine dyes. J Phys Chem C 115:2470–2475. https://doi.org/10.1021/Jp1108015

    Article  CAS  Google Scholar 

  21. Wu J, Pisula W, Mullen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747. https://doi.org/10.1021/cr068010r

    Article  CAS  Google Scholar 

  22. Hill JP, Jin W, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T (2004) Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. Science 304:1481–1483. https://doi.org/10.1126/science.1097789

    Article  CAS  Google Scholar 

  23. Jin W, Yamamoto Y, Fukushima T, Ishii N, Kim J, Kato K, Takata M, Aida T (2008) Systematic studies on structural parameters for nanotubular assembly of hexa-peri-hexabenzocoronenes. J Am Chem Soc 130:9434–9440. https://doi.org/10.1021/Ja801179e

    Article  CAS  Google Scholar 

  24. Yamamoto Y, Fukushima T, Suna Y, Ishii N, Saeki A, Seki S, Tagawa S, Taniguchi M, Kawai T, Aida T (2006) Photoconductive coaxial nanotubes of molecularly connected electron donor and acceptor layers. Science 314:1761–1764. https://doi.org/10.1126/science.1134441

    Article  CAS  Google Scholar 

  25. Yamamoto Y, Fukushima T, Saeki A, Seki S, Tagawa S, Ishii N, Aida T (2007) Molecular engineering of coaxial donor-acceptor heterojunction by coassembly of two different hexabenzocoronenes: graphitic nanotubes with enhanced photoconducting properties. J Am Chem Soc 129:9276–9277. https://doi.org/10.1021/Ja073577q

    Article  CAS  Google Scholar 

  26. Yamamoto Y, Zhang GX, Jin WS, Fukushima T, Ishii N, Saeki A, Seki S, Tagawa S, Minari T, Tsukagoshi K, Aida T (2009) Ambipolar-transporting coaxial nanotubes with a tailored molecular graphene-fullerene heterojunction. Proc Natl Acad Sci USA 106:21051–21056. https://doi.org/10.1073/pnas.0905655106

    Article  Google Scholar 

  27. He YN, Yamamoto Y, Jin WS, Fukushima T, Saeki A, Seki S, Ishii N, Aida T (2010) Hexabenzocoronene graphitic nanotube appended with dithienylethene pendants: photochromism for the modulation of photoconductivity. Adv Mater 22:829–832. https://doi.org/10.1002/adma.200902601

    Article  CAS  Google Scholar 

  28. Zhang W, Jin W, Fukushima T, Saeki A, Seki S, Aida T (2011) Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science 334:340–343. https://doi.org/10.1126/science.1210369

    Article  CAS  Google Scholar 

  29. Zhang W, Jin W, Fukushima T, Mori T, Aida T (2015) Helix sense-selective supramolecular polymerization seeded by a one-handed helical polymeric assembly. J Am Chem Soc 137:13792–13795. https://doi.org/10.1021/jacs.5b09878

    Article  CAS  Google Scholar 

  30. Prasanthkumar S, Zhang W, Jin W, Fukushima T, Aida T (2015) Selective synthesis of single- and multi-walled supramolecular nanotubes by using solvophobic/solvophilic controls: stepwise radial growth via “coil-on-tube” intermediates. Angew Chem Int Ed 54:11168–11172. https://doi.org/10.1002/anie.201505806

    Article  CAS  Google Scholar 

  31. Shimizu T, Kogiso M, Masuda M (1996) Vesicle assembly in microtubes. Nature 383:487–488. https://doi.org/10.1038/383487b0

    Article  CAS  Google Scholar 

  32. Kogiso M, Ohnishi S, Yase K, Masuda M, Shimizu T (1998) Dicarboxylic oligopeptide bolaamphiphiles: proton-triggered self-assembly of microtubes with loose solid surfaces. Langmuir 14:4978–4986. https://doi.org/10.1021/la9802419

    Article  CAS  Google Scholar 

  33. Coleman AC, Beierle JM, Stuart MCA, Macia B, Caroli G, Mika JT, van Dijken DJ, Chen JW, Browne WR, Feringa BL (2011) Light-induced disassembly of self-assembled vesicle-capped nanotubes observed in real time. Nat Nanotechnol 6:547–552. https://doi.org/10.1038/Nnano.2011.120

    Article  CAS  Google Scholar 

  34. Erne PM, van Bezouwen LS, Stacko P, van Dtjken DJ, Chen JW, Stuart MCA, Boekema EJ, Feringa BL (2015) Loading of vesicles into soft amphiphilic nanotubes using osmosis. Angew Chem Int Ed 54:15122–15127. https://doi.org/10.1002/anie.201506493

    Article  CAS  Google Scholar 

  35. Erne PM, Stacko P, van Dijken DJ, Chen J, Stuart MCA, Feringa B (2016) End-capping of amphiphilic nanotubes with phospholipid vesicles: impact of the phospholipid on the cap formation and vesicle loading under osmotic conditions. Chem Commun 52:11697–11700. https://doi.org/10.1039/c6cc05101d

    Article  CAS  Google Scholar 

  36. Saha A, Manna S, Nandi AK (2008) Hierarchical tuning of 1-D macro morphology by changing the composition of a binary hydrogel and its influence on the photoluminescence property. Chem Commun 3732–3734. https://doi.org/10.1039/b805344h

  37. Saha A, Roy B, Esterrani A, Nandi AK (2011) Effect of complementary small molecules on the properties of bicomponent hydrogel of riboflavin. Org Biomol Chem 9:770–776. https://doi.org/10.1039/c0ob00670j

    Article  CAS  Google Scholar 

  38. Diaz N, Simon FX, Schmutz M, Rawiso M, Decher G, Jestin J, Mésini PJ (2005) Self-assembled diamide nanotubes in organic solvents. Angew Chem Int Ed 44:3260–3264. https://doi.org/10.1002/anie.200500536

    Article  CAS  Google Scholar 

  39. Shimizu T (2018) Self-assembly of discrete organic nanotubes. Bull Chem Soc Jpn 91:623–668. https://doi.org/10.1246/bcsj.20170424

    Article  CAS  Google Scholar 

  40. Soler-illia GJD, Sanchez C, Lebeau B, Patarin J (2002) Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102:4093–4138. https://doi.org/10.1021/cr0200062

    Article  CAS  Google Scholar 

  41. Simon FX, Khelfallah NS, Schmutz M, Diaz N, Mésini PJ (2007) Formation of helical mesopores in organic polymer matrices. J Am Chem Soc 129:3788–3789. https://doi.org/10.1021/ja067261e

    Article  CAS  Google Scholar 

  42. Nguyen TTT, Simon FX, Khelfallah NS, Schmutz M, Mésini PJ (2010) Mesoporous polymeric catalysts synthesized from self-assembled organic nanotubes as templates. J Mater Chem 20:3831–3833. https://doi.org/10.1039/c000534g

    Article  CAS  Google Scholar 

  43. Marsh A, Silvestri M, Lehn JM (1996) Self-complementary hydrogen bonding heterocycles designed for the enforced self-assembly into supramolecular macrocycles. Chem Commun 1527–1528. https://doi.org/10.1039/cc9960001527

  44. Fenniri H, Mathivanan P, Vidale K, Sherman D, Wood K, Stwell J (2001) Helical rosette nanotubes: design, self-assembly, and characterization. J Am Chem Soc 123:3854–3855. https://doi.org/10.1021/ja005886l

    Article  CAS  Google Scholar 

  45. Beingessner RL, Fan YW, Fenniri H (2016) Molecular and supramolecular chemistry of rosette nanotubes. Rsc Adv 6:75820–75838. https://doi.org/10.1039/c6ra16315g

    Article  CAS  Google Scholar 

  46. Fenniri H, Deng BL, Ribbe AE, Hallenga K, Jacob J, Thiyagarajan P (2002) Entropically driven self-assembly of multichannel rosette nanotubes. Proc Natl Acad Sci USA 99:6487–6492. https://doi.org/10.1073/pnas.032527099

    Article  CAS  Google Scholar 

  47. Chen YP, Song S, Yan ZM, Fenniri H, Webster TJ (2011) Self-assembled rosette nanotubes encapsulate and slowly release dexamethasone. Int J Nanomedicine 6:1035–1044. https://doi.org/10.2147/Ijn.S18755

    Article  CAS  Google Scholar 

  48. Song S, Chen YP, Yan ZM, Fenniri H, Webster TJ (2011) Self-assembled rosette nanotubes for incorporating hydrophobic drugs in physiological environments. Int J Nanomedicine 6:101–107. https://doi.org/10.2147/Ijn.S11957

    Article  CAS  Google Scholar 

  49. Fukino T, Joo H, Hisada Y, Obana M, Yamagishi H, Hikima T, Takata M, Fujita N, Aida T (2014) Manipulation of discrete nanostructures by selective modulation of noncovalent forces. Science 344:499–504. https://doi.org/10.1126/science.1252120

    Article  CAS  Google Scholar 

  50. Muraoka T, Kinbara K, Aida T (2006) Mechanical twisting of a guest by a photoresponsive host. Nature 440:512–515. https://doi.org/10.1038/nature04635

    Article  CAS  Google Scholar 

  51. Obana M, Fukino T, Hikima T, Aida T (2016) Self-sorting in the formation of metal-organic nanotubes: a crucial role of 2D cooperative interactions. J Am Chem Soc 138:9246–9250. https://doi.org/10.1021/jacs.6b04693

    Article  CAS  Google Scholar 

  52. Huang Z, Kang SK, Banno M, Yamaguchi T, Lee D, Seok C, Yashima E, Lee M (2012) Pulsating tubules from noncovalent macrocycles. Science 337:1521–1526. https://doi.org/10.1126/science.1224741

    Article  CAS  Google Scholar 

  53. Kim JK, Lee E, Lim Y, Lee M (2008) Supramolecular capsules with gated pores from an amphiphilic rod assembly. Angew Chem Int Ed 47:4662–4666. https://doi.org/10.1002/anie.200705863

    Article  CAS  Google Scholar 

  54. Wu S, Li Y, Xie SY, Ma C, Lim J, Zhao J, Kim DS, Yang M, Yoon DK, Lee M, Kim SO, Huang Z (2017) Supramolecular nanotubules as a catalytic regulator for palladium cations: applications in selective catalysis. Angew Chem Int Ed 56:11511–11514. https://doi.org/10.1002/anie.201706373

    Article  CAS  Google Scholar 

  55. Wang Y, Huang Z, Kim Y, He Y, Lee M (2014) Guest-driven inflation of self-assembled nanofibers through hollow channel formation. J Am Chem Soc 136:16152–16155. https://doi.org/10.1021/ja510182x

    Article  CAS  Google Scholar 

  56. Moon KS, Kim HJ, Lee E, Lee M (2007) Self-assembly of T-Shaped aromatic amphiphiles into stimulus-responsive nanofibers. Angew Chem Int Ed 46:6807–6810. https://doi.org/10.1002/anie.200702136

    Article  CAS  Google Scholar 

  57. Kim Y, Li H, He Y, Chen X, Ma X, Lee M (2017) Collective helicity switching of a DNA-coat assembly. Nat Nanotechnol 12:551–558. https://doi.org/10.1038/Nnano.2017.42

    Article  CAS  Google Scholar 

  58. Kim Y, Kang J, Shen B, Wang Y, He Y, Lee M (2015) Open-closed switching of synthetic tubular pores. Nat Commun 6:8650. https://doi.org/10.1038/ncomms9650

    Article  CAS  Google Scholar 

  59. Lutz JF, Weichenhan K, Akdemir O, Hoth A (2007) About the phase transitions in aqueous solutions of thermoresponsive copolymers and hydrogels based on 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 40:2503–2508. https://doi.org/10.1021/ma062925q

    Article  CAS  Google Scholar 

  60. Zhang X, Bera T, Liang W, Fang J (2011) Longitudinal zipping/unzipping of self-assembled organic tubes. J Phys Chem B 115:14445–14449. https://doi.org/10.1021/Jp2064276

    Article  CAS  Google Scholar 

  61. Shen B, He Y, Kim Y, Wang Y, Lee M (2016) Spontaneous capture of carbohydrate guests through folding and zipping of self-assembled ribbons. Angew Chem Int Ed 55:2382–2386. https://doi.org/10.1002/anie.201509190

    Article  CAS  Google Scholar 

  62. Matile S, Jentzsch AV, Montenegro J, Fin A (2011) Recent synthetic transport systems. Chem Soc Rev 40:2453–2474. https://doi.org/10.1039/c0cs00209g

    Article  CAS  Google Scholar 

  63. Fyles TM (2007) Synthetic ion channels in bilayer membranes. Chem Soc Rev 36:335–347. https://doi.org/10.1039/b603256g

    Article  CAS  Google Scholar 

  64. Gong B, Shao Z (2013) Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics. Acc Chem Res 46:2856–2866. https://doi.org/10.1021/ar400030e

    Article  CAS  Google Scholar 

  65. Yang Y, Feng W, Hu J, Zou SL, Gao RZ, Yamato K, Kline M, Cai Z, Gao Y, Wang Y, Li Y, Yang Y, Yuan L, Zeng XC, Gong B (2011) Strong aggregation and directional assembly of aromatic oligoamide macrocycles. J Am Chem Soc 133:18590–18593. https://doi.org/10.1021/ja208548b

    Article  CAS  Google Scholar 

  66. Zhou X, Liu G, Yamato K, Shen Y, Cheng R, Wei X, Bai W, Gao Y, Li H, Liu Y, Liu F, Czajkowsky DM, Wang J, Dabney MJ, Cai Z, Hu J, Bright FV, He L, Zeng XC, Shao Z, Gong B (2012) Self-assembling subnanometer pores with unusual mass-transport properties. Nat Commun 3:949. https://doi.org/10.1038/ncomms1949

    Article  CAS  Google Scholar 

  67. Chen YL, Zhu B, Han Y, Bo ZS (2012) Self-assembly of cationic pyrene nanotubes. J Mater Chem 22:4927–4931. https://doi.org/10.1039/c2jm15997j

    Article  CAS  Google Scholar 

  68. Bösch CD, Langenegger SM, Häner R (2016) Light-harvesting nanotubes formed by supramolecular assembly of aromatic oligophosphates. Angew Chem Int Ed 55:9961–9964. https://doi.org/10.1002/anie.201604508

    Article  CAS  Google Scholar 

  69. Faul CFJ, Antonietti M (2003) Ionic self-assembly: facile synthesis of supramolecular materials. Adv Mater 15:673–683. https://doi.org/10.1002/adma.200300379

    Article  CAS  Google Scholar 

  70. Wang Z, Medforth CJ, Shelnutt JA (2004) Porphyrin nanotubes by ionic self-assembly. J Am Chem Soc 126:15954–15955. https://doi.org/10.1021/Ja045068j

    Article  CAS  Google Scholar 

  71. van Rossum BJ, Steensgaard DB, Mulder FM, Boender GJ, Schaffner K, Holzwarth AR, de Groot HJM (2001) A refined model of the chlorosomal antennae of the green bacterium Chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spectroscopy. Biochemistry 40:1587–1595. https://doi.org/10.1021/bi0017529

    Article  CAS  Google Scholar 

  72. Franco R, Jacobsen JL, Wang H, Wang Z, Istvan K, Schore NE, Song Y, Medforth CJ, Shelnutt JA (2010) Molecular organization in self-assembled binary porphyrin nanotubes revealed by resonance Raman spectroscopy. PCCP 12:4072–4077. https://doi.org/10.1039/b926068d

    Article  CAS  Google Scholar 

  73. Korich AL, Iovine PM (2010) Boroxine chemistry and applications: a perspective. Dalton Trans 39:1423–1431. https://doi.org/10.1039/b917043j

    Article  CAS  Google Scholar 

  74. Ishikawa K, Kameta N, Masuda M, Asakawa M, Shimizu T (2014) Boroxine nanotubes: moisture-sensitive morphological transformation and guest release. Adv Funct Mater 24:603–609. https://doi.org/10.1002/adfm.201302005

    Article  CAS  Google Scholar 

  75. Shi N, Yin G, Li H, Han M, Xu Z (2008) Uncommon hexagonal microtubule based gel from a simple trimesic amide. New J Chem 32:2011–2015. https://doi.org/10.1039/b804455d

    Article  CAS  Google Scholar 

  76. Shimizu T, Kameta N, Ding W, Masuda M (2016) Supramolecular self-assembly into biofunctional soft nanotubes: from bilayers to monolayers. Langmuir 32:12242–12264. https://doi.org/10.1021/acs.langmuir.6b01632

    Article  CAS  Google Scholar 

  77. Cao H, Duan P, Zhu X, Jiang J, Liu M (2012) Self-assembled organic nanotubes through instant gelation and universal capacity for guest molecule encapsulation. Chem Eur J 18:5546–5550. https://doi.org/10.1002/chem.201103654

    Article  CAS  Google Scholar 

  78. Sahoo P, Kumar DK, Raghavan SR, Dastidar P (2011) Supramolecular synthons in designing low molecular mass gelling agents: l-amino acid methyl ester cinnamate salts and their anti-solvent-induced instant gelation. Chem Asian J 6:1038–1047. https://doi.org/10.1002/asia.201000560

    Article  CAS  Google Scholar 

  79. Mu X, Song W, Zhang Y, Ye K, Zhang H, Wang Y (2010) Controllable self-assembly of n-type semiconductors to microtubes and highly conductive ultralong microwires. Adv Mater 22:4905–4909. https://doi.org/10.1002/adma.201002259

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimi Shimizu .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimizu, T. (2021). Rigid–Flexible Block Molecule-Based Nanotubes. In: Smart Soft-Matter Nanotubes. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-2685-2_9

Download citation

Publish with us

Policies and ethics