Skip to main content

Bottlebrush Copolymer-Based Nanotubes

  • Chapter
  • First Online:
Smart Soft-Matter Nanotubes

Part of the book series: Nanostructure Science and Technology ((NST))

  • 294 Accesses

Abstract

In early 2000s, the fabrication technique called molecular sculpting of crosslinked nanofibers was shown to yield soft-matter nanotubes from a triblock copolymer. This approach utilizes the amphiphilicity of the polymers. This chapter firstly describes excellent works on the self-assembly of micro- and nanotube structures in the dawn of copolymer-based tiny tubes. For example, amphiphilic polymers including rod–coil and coil–coil block copolymers are involved with the micro- and nanotube formation. Then, the author introduces the fabrication of nanotube structures and microporous organic nanotube networks from bottlebrush copolymers, focusing on their specific functions and applications. These nanotubes have recently emerged on the basis of the molecular sculpting. For example, hyper-crosslinking of the polystyrene shell with formaldehyde dimethyl acetal and anhydrous FeCl3 and subsequent removal of the polylactide (PLA)-associated core with acidic dioxane solution gave robust organic nanotube framework. Importantly, interbrush, intrabrush, crosslinking reaction of the polystyrene shell, and complete removal of the PLA-associated core part lead to the production of three different pore structures, i.e., meso-/macropores, micropores, and mesopores, respectively. The inner surfaces are, therefore, modified with various kinds of functional groups including catalytic functionalities, acidic sulfonic, basic amino, and thiol functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stewart S, Liu G (2000) Block copolymer nanotubes. Angew Chem Int Ed 39:340–344. https://doi.org/10.1002/(Sici)1521-3773(20000117)39:2%3c340::Aid-Anie340%3e3.0.Co;2-H

    Article  CAS  Google Scholar 

  2. Li Z, Liu G (2003) Water-dispersible tetrablock copolymer synthesis, aggregation, nanotube preparation, and impregnation. Langmuir 19:10480–10486. https://doi.org/10.1021/la035263w

  3. Lee M, Cho BK, Zin WC (2001) Supramolecular structures from rod-coil block copolymers. Chem Rev 101:3869–3892. https://doi.org/10.1021/cr0001131

    Article  CAS  Google Scholar 

  4. Kim HC, Park SM, Hinsberg WD (2010) Block copolymer based nanostructures: materials, processes, and applications to electronics. Chem Rev 110:146–177. https://doi.org/10.1021/cr900159v

    Article  CAS  Google Scholar 

  5. Cabral H, Miyata K, Osada K, Kataoka K (2018) Block copolymer micelles in nanomedicine applications. Chem Rev 118:6844–6892. https://doi.org/10.1021/acs.chemrev.8b00199

    Article  CAS  Google Scholar 

  6. Jenekhe SA, Chen XL (1998) Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes. Science 279:1903–1907. https://doi.org/10.1126/science.279.5358.1903

    Article  CAS  Google Scholar 

  7. Raez J, Barjovanu R, Massey JA, Winnik MA, Manners I (2000) Self-assembled organometallic block copolymer nanotubes. Angew Chem Int Ed 39:3862–3865. https://doi.org/10.1002/1521-3773(20001103)39:21%3c3862::AID-ANIE3862%3e3.0.CO;2-1

    Article  CAS  Google Scholar 

  8. Raez J, Manners I, Winnik MA (2002) Nanotubes from the self-assembly of asymmetric crystalline-coil poly(ferrocenylsilane-siloxane) block copolymers. J Am Chem Soc 124:10381–10395. https://doi.org/10.1021/ja020349h

    Article  CAS  Google Scholar 

  9. Massey J, Power KN, Manners I, Winnik MA (1998) Self-assembly of a novel organometallic-inorganic block copolymer in solution and the solid state: nonintrusive observation of novel wormlike poly(ferrocenyldimethylsilame)-b-poly(dimethylsiloxane) micelles. J Am Chem Soc 120:9533–9540. https://doi.org/10.1021/ja981803d

    Article  CAS  Google Scholar 

  10. Raez J, Tomba JP, Manners I, Winnik MA (2003) A reversible tube-to-rod transition in a block copolymer micelle. J Am Chem Soc 125:9546–9547. https://doi.org/10.1021/ja030251i

    Article  CAS  Google Scholar 

  11. Vilgis T, Halperin A (1991) Aggregation of coil crystalline block copolymers—equilibrium crystallization. Macromolecules 24:2090–2095. https://doi.org/10.1021/ma00008a058

    Article  CAS  Google Scholar 

  12. Yu K, Eisenberg A (1998) Bilayer morphologies of self-assembled crew-cut aggregations of amphiphilic PS-b-PEO diblock copolymers in solution. Macromolecules 31:3509–3518. https://doi.org/10.1021/ma971419l

    Article  CAS  Google Scholar 

  13. Shen H, Eisenberg A (2000) Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H2O. Macromolecules 33:2561–2572. https://doi.org/10.1021/ma991161u

    Article  CAS  Google Scholar 

  14. Li Z-C, Liang Y-Z, Li F-M (1999) Multiple morphologies of aggregates from block copolymer containing glycopolymer segments. Chem Commun 1557–1558. https://doi.org/10.1039/A905114G

  15. Zhang L, Eisenberg A (1998) Formation of crew-cut aggregates of various morphologies from amphiphilc block copolymers in solution. Polym Adv Technol 9:677–699. https://doi.org/10.1002/(SICI)1099-1581(1998100)9:10/11%3c677::AID-PAT845%3e3.0.CO;2-%23

    Article  CAS  Google Scholar 

  16. Cameron NS, Corbierre MK, Eisenberg A (1999) Asymmetric amphiphilic block copolymers in solution: a morphological wonderland. Can J Chem 77:1311–1326. https://doi.org/10.1139/v99-141

    Article  CAS  Google Scholar 

  17. Gao ZS, Varshney SK, Wong S, Eisenberg A (1994) Block-copolymer crew-cut micelles in water. Macromolecules 27:7923–7927. https://doi.org/10.1021/ma00104a058

    Article  CAS  Google Scholar 

  18. Cornelissen JJLM, Fischer M, Sommerdijk NAJM, Nolte RJM (1998) Helical suprastructures from charged poly(styrene)-poly(isocyanodipeptide) block copolymers. Science 280:1427–1430. https://doi.org/10.1126/science.280.5368.1427

    Article  CAS  Google Scholar 

  19. Zhang MF, Muller AHE (2005) Cylindrical polymer brushes. J Polym Sci Part A Polym Chem 43:3461–3481. https://doi.org/10.1002/pola.20900

    Article  CAS  Google Scholar 

  20. Sheiko SS, Sumerlin BS, Matyjaszewski K (2008) Cylindrical molecular brushes: synthesis, characterization, and properties. Prog Polym Sci 33:759–785. https://doi.org/10.1016/j.progpolymsci.2008.05.001

    Article  CAS  Google Scholar 

  21. Mullner M, Yuan JY, Weiss S, Walther A, Fortsch M, Drechsler M, Muller AHE (2010) Water-soluble organo-silica hybrid nanotubes templated by cylindrical polymer brushes. J Am Chem Soc 132:16587–16592. https://doi.org/10.1021/ja107132j

    Article  CAS  Google Scholar 

  22. Huang K, Rzayev J (2011) Charge and size selective molecular transport by amphiphilic organic nanotubes. J Am Chem Soc 133:16726–16729. https://doi.org/10.1021/ja204296v

    Article  CAS  Google Scholar 

  23. Wang TQ, Xu Y, He ZD, Zhou MH, Huang K (2018) Microporous organic nanotube networks from hyper cross-linking core-shell bottlebrush copolymers for selective adsorption study. Chin J Polym Sci 36:98–105. https://doi.org/10.1007/s10118-018-2007-0

    Article  CAS  Google Scholar 

  24. Shimizu T, Ding W, Kameta N (2020) Soft-matter nanotubes: a platform for diverse functions and applications. Chem Rev 120:2347–2407. https://doi.org/10.1021/acs.chemrev.9b00509

    Article  CAS  Google Scholar 

  25. Xiong L, Yang K, Zhang H, Liao X, Huang K (2016) Soluble organic nanotubes for catalytic systems. Nanotechnology 27:115603–115610. https://doi.org/10.1088/0957-4484/27/11/115603

    Article  CAS  Google Scholar 

  26. Zhou M, Zhang H, Xiong L, He Z, Zhong A, Wang T, Xu Y, Huang K (2016) Synthesis of magnetic microporous organic nanotube networks for adsorption application. RSC Adv 6:87745–87752. https://doi.org/10.1039/c6ra18836b

    Article  CAS  Google Scholar 

  27. Polshettiwar V, Luque R, Fihri A, Zhu HB, Bouhrara M, Basset JM (2011) Magnetically recoverable nanocatalysts. Chem Rev 111:3036–3075. https://doi.org/10.1021/cr100230z

    Article  CAS  Google Scholar 

  28. Wang D, Astruc D (2014) Fast-growing field of magnetically recyclable nanocatalysts. Chem Rev 114:6949–6985. https://doi.org/10.1021/cr500134h

    Article  CAS  Google Scholar 

  29. Zhang H, Xiong L, He Z, Zhong A, Wang T, Xu Y, Huang K (2016) Microporous organic nanotube network supported acid and base catalyst system for one-pot cascade reactions. New J Chem 40:7282–7285. https://doi.org/10.1039/c6nj01457g

    Article  CAS  Google Scholar 

  30. Xiong L, Zhang H, He Z, Wang T, Xu Y, Zhou M, Huang K (2018) Acid-base bifunctional amphiphilic organic nanotubes as a catalyst for one-pot cascade reactions in water. New J Chem 42:1368–1372. https://doi.org/10.1039/c7nj04209d

    Article  CAS  Google Scholar 

  31. Balanta A, Godard C, Claver C (2011) Pd nanoparticles for C-C coupling reactions. Chem Soc Rev 40:4973–4985. https://doi.org/10.1039/c1cs15195a

    Article  CAS  Google Scholar 

  32. Xu Y, Wang T, He Z, Zhong A, Huang K (2016) Carboxyl-containing microporous organic nanotube networks as a platform for Pd catalysts. RSC Adv 6:39933–39939. https://doi.org/10.1039/c6ra05753e

    Article  CAS  Google Scholar 

  33. Zhang H, Zhou M, Xiong L, He Z, Wang T, Xu Y, Huang K (2018) Oxo-vanadium (IV) complex supported by microporous organic nanotube frameworks: a high selective heterogeneous catalyst for the oxidation of thiols to disulfides. Microporous Mesoporous Mater 255:103–109. https://doi.org/10.1016/j.micromeso.2017.07.041

    Article  CAS  Google Scholar 

  34. Zhang H, Xiong L, He Z, Zhong A, Wang T, Xu Y, Zhou M, Huang K (2016) Functionalized microporous organic nanotube networks as a new platform for highly efficient heterogeneous catalysis. Polym Chem 7:4975–4982. https://doi.org/10.1039/c6py01052k

    Article  CAS  Google Scholar 

  35. Xu Y, Wang T, He Z, Zhong A, Huang K (2016) Well-dispersed gold nanoparticles anchored into thiol-functionalized hierarchically porous materials for catalytic applications. Microporous Mesoporous Mater 229:1–7. https://doi.org/10.1016/j.micromeso.2016.04.013

    Article  CAS  Google Scholar 

  36. Lee H, Kim H, Choi TJ, Park HW, Chang JY (2015) Preparation of a microporous organic polymer by the thiol-yne addition reaction and formation of Au nanoparticles inside the polymer. Chem Commun 51:9805–9808. https://doi.org/10.1039/c5cc02269j

    Article  CAS  Google Scholar 

  37. Pachfule P, Kandambeth S, Diaz DD, Banerjee R (2014) Highly stable covalent organic framework-Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chem Commun 50:3169–3172. https://doi.org/10.1039/c3cc49176e

    Article  CAS  Google Scholar 

  38. Liu BC, Yu SL, Wang Q, Hu WT, Jing P, Liu Y, Jia WJ, Liu YX, Liu LX, Zhang J (2013) Hollow mesoporous ceria nanoreactors with enhanced activity and stability for catalytic application. Chem Commun 49:3757–3759. https://doi.org/10.1039/c3cc40665b

    Article  CAS  Google Scholar 

  39. Zhang ZY, Shao CL, Zou P, Zhang P, Zhang MY, Mu JB, Guo ZC, Li XH, Wang CH, Liu YC (2011) In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol. Chem Commun 47:3906–3908. https://doi.org/10.1039/c0cc05693f

    Article  CAS  Google Scholar 

  40. Liu HY, Wang J, Feng ZB, Lin YM, Zhang LY, Su DS (2015) Facile synthesis of Au nanoparticles embedded in an ultrathin hollow graphene nanoshell with robust catalytic performance. Small 11:5059–5064. https://doi.org/10.1002/smll.201500635

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimi Shimizu .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimizu, T. (2021). Bottlebrush Copolymer-Based Nanotubes. In: Smart Soft-Matter Nanotubes. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-2685-2_8

Download citation

Publish with us

Policies and ethics