Skip to main content

Protein-Based Nanotubes

  • Chapter
  • First Online:
Smart Soft-Matter Nanotubes

Part of the book series: Nanostructure Science and Technology ((NST))

  • 301 Accesses

Abstract

One of the practical methodologies for the fabrication of soft-matter nanotubes involves a template technique. Potent template methods to prepare polymer nanotubes including synthetic and natural macromolecules like proteins can be divided into two approaches, i.e., endo-templating and exo-templating. This chapter describes the preparation, functions, and applications of protein-based nanotubes. Protein nanotubes are mainly fabricated by using endo-templating with the use of polycarbonate membrane or microporous alumina. First, a typical procedure of wetting layer-by-layer template synthesis with a track-etched nanoporous polycarbonate membrane is introduced as reliable and facile technique to fabricate the structure-guided protein-based nanotubes. For example, the combination of two protein building blocks, positively charged poly-l-arginine (PLAR) and a negatively charged human serum albumin (HSA), can produce homogeneous (PLAR/HSA)3 nanotubes. Various kinds of protein-based nanotubes with rational combination of functional proteins and enzymes are discussed in succession from the perspective of structural characteristics and unique functions. Finally, the author addresses the elaborated assembly of GroEL-based nanotubes into protein nanotubes with high axial ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimizu T, Masuda M, Minamikawa H (2005) Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev 105:1401–1443. https://doi.org/10.1021/cr030072j

    Article  CAS  Google Scholar 

  2. Porrata P, Goun E, Matsui H (2002) Size-controlled self-assembly of peptide nanotubes using polycarbonate membranes as templates. Chem Mater 14:4378–4381. https://doi.org/10.1021/cm0205940

    Article  CAS  Google Scholar 

  3. Kim K, Jin J-I (2001) Preparation of PPV nanotubes and nanorods and carbonized products derived therefrom. Nano Lett 1:631–636. https://doi.org/10.1021/nl010055e

    Article  CAS  Google Scholar 

  4. Steinhart M, Wendorff JH, Greiner A, Wehrspohn RB, Nielsch K, Schilling J, Choi J, Goesele U (2002) Polymer nanotubes by wetting of ordered porous templates. Science 296:1997. https://doi.org/10.1126/science.1071210

    Article  CAS  Google Scholar 

  5. Hou SF, Harrell CC, Trofin L, Kohli P, Martin CR (2004) Layer-by-layer nanotube template synthesis. J Am Chem Soc 126:5674–5675. https://doi.org/10.1021/ja049537t

    Article  CAS  Google Scholar 

  6. Hou S, Wang J, Martin CR (2005) Template-synthesized protein nanotubes. Nano Lett 5:231–234. https://doi.org/10.1021/nl048305p

    Article  CAS  Google Scholar 

  7. Komatsu T (2012) Protein-based nanotubes for biomedical applications. Nanoscale 4:1910–1918. https://doi.org/10.1039/c1nr11224d

  8. Qu X, Lu G, Tsuchida E, Komatsu T (2008) Protein nanotubes comparised of an alternate layer-by-layer assembly using a polycation as an electrostatic glue. Chem Eur J 14:10303–10308. https://doi.org/10.1002/chem.200800771

    Article  CAS  Google Scholar 

  9. Qu X, Komatsu T (2010) Molecular capture in protein nanotubes. ACS Nano 4:563–573. https://doi.org/10.1021/Nn901474y

    Article  CAS  Google Scholar 

  10. Goto S, Amano Y, Akiyama M, Bottcher C, Komatsu T (2013) Gold nanoparticle inclusion into protein nanotube as a layered wall component. Langmuir 29:14293–14300. https://doi.org/10.1021/La403283x

    Article  CAS  Google Scholar 

  11. Qu X, Kobayashi N, Komatsu T (2010) Solid nanotubes comprising α-Fe2O3 nanoparticles prepared from ferritin protein. ACS Nano 4:1732–1738. https://doi.org/10.1021/Nn901879d

    Article  CAS  Google Scholar 

  12. Kobayakawa S, Nakai Y, Akiyama M, Komatsu T (2017) Self-propelled soft protein microtubes with a Pt nanoparticle interior surface. Chem Eur J 23:5044–5050. https://doi.org/10.1002/chem.201605055

    Article  CAS  Google Scholar 

  13. Wu Z, Wu Y, He W, Lin X, Sun J, He Q (2013) Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew Chem Int Ed 52:7000–7003. https://doi.org/10.1002/anie.201301643

    Article  CAS  Google Scholar 

  14. Komatsu T, Terada H, Kobayashi N (2011) Protein nanotubes with an enzyme interior surface. Chem Eur J 17:1849–1854. https://doi.org/10.1002/chem.201001937

    Article  CAS  Google Scholar 

  15. Amano Y, Komatsu T (2015) Nanotube reactor with a lipase wall interior for enzymatic ring-opening oligomerization of lactone. Chem Lett 44:1646–1648. https://doi.org/10.1246/cl.150789

    Article  CAS  Google Scholar 

  16. Shimizu T, Minamikawa H, Kogiso M, Aoyagi M, Kameta N, Ding W, Masuda M (2014) Self-organized nanotube materials and their application in bioengineering. Polym J 46:831–858. https://doi.org/10.1038/Pj.2014.72

    Article  CAS  Google Scholar 

  17. Shimizu T (2008) Self-assembled organic nanotubes: toward attoliter chemistry. J Polym Sci Part A: Polym Chem 46:2601–2611. https://doi.org/10.1002/Pola.22652

    Article  CAS  Google Scholar 

  18. Kameta N, Minamikawa H, Masuda M (2011) Supramolecular organic nanotubes: how to utilize the inner nanospace and the outer space. Soft Matter 7:4539–4561. https://doi.org/10.1039/c0sm01559h

    Article  CAS  Google Scholar 

  19. Shimizu T, Ding W, Kameta N (2020) Soft-matter nanotubes: a platform for diverse functions and applications. Chem Rev 120:2347–2407. https://doi.org/10.1021/acs.chemrev.9b00509

    Article  CAS  Google Scholar 

  20. Komatsu T, Qu X, Ihara H, Fujihara M, Azuma H, Ikeda H (2011) Virus trap in human serum albumin nanotube. J Am Chem Soc 133:3246–3248. https://doi.org/10.1021/Ja1096122

    Article  CAS  Google Scholar 

  21. Yuge S, Akiyama M, Ishii M, Namkoong H, Yagi K, Nakai Y, Adachi R, Komatsu T (2017) Glycoprotein nanotube traps influenza virus. Chem Lett 46:95–97. https://doi.org/10.1246/cl.160805

    Article  CAS  Google Scholar 

  22. Landoulsi J, Roy CJ, Dupont-Gillain C, Demoustier-Champagne S (2009) Synthesis of collagen nanotubes with highly regular dimensions through membrane-templated layer-by-layer assembly. Biomacromolecules 10:1021–1024. https://doi.org/10.1021/bm900245h

    Article  CAS  Google Scholar 

  23. Kalaskar DM, Poleunis C, Dupont-Gillain C, Demoustier-Champagne S (2011) Elaboration of nanostructured biointerfaces with tunable degree of coverage by protein nanotubes using electrophoretic deposition. Biomacromolecules 12:4104–4111. https://doi.org/10.1021/bm2011592

    Article  CAS  Google Scholar 

  24. Kalaskar DM, Demoustier-Champagne S, Dupont-Gillain CC (2013) Interaction of preosteoblasts with surface-immobilized collagen-based nanotubes. Colloids Surf B Biointerfaces 111:134–141. https://doi.org/10.1016/j.colsurfb.2013.05.035

    Article  CAS  Google Scholar 

  25. Ramirez-Wong DG, Bonhomme C, Demoustier-Champagne S, Jonas AM (2018) Layer-by-layer assembly of brushes of vertically-standing enzymatic nanotubes. J Colloid Interface Sci 514:592–598. https://doi.org/10.1016/j.jcis.2017.12.063

    Article  CAS  Google Scholar 

  26. Chia KK, Rubner MF, Cohen RE (2009) pH-Responsive reversibly swellable nanotube arrays. Langmuir 25:14044–14052. https://doi.org/10.1021/la9015959

    Article  CAS  Google Scholar 

  27. Biswas S, Kinbara K, Oya N, Ishii N, Taguchi H, Aida T (2009) A tubular biocontainer: metal ion-induced 1D assembly of a molecularly engineered chaperonin. J Am Chem Soc 131:7556–7557. https://doi.org/10.1021/ja902696q

    Article  CAS  Google Scholar 

  28. Biswas S, Kinbara K, Niwa T, Taguchi H, Ishii N, Watanabe S, Miyata K, Kataoka K, Aida T (2013) Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP. Nat Chem 5:613–620. https://doi.org/10.1038/Nchem.1681

    Article  CAS  Google Scholar 

  29. Sim S, Miyajima D, Niwa T, Taguchi H, Aida T (2015) Tailoring micrometer-long high-integrity 1D array of superparamagnetic nanoparticles in a nanotubular protein jacket and its lateral magnetic assembling behavior. J Am Chem Soc 137:4658–4661. https://doi.org/10.1021/jacs.5b02144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimi Shimizu .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimizu, T. (2021). Protein-Based Nanotubes. In: Smart Soft-Matter Nanotubes. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-2685-2_7

Download citation

Publish with us

Policies and ethics