Skip to main content

Di-phenylalanine-Based Nanotubes

  • Chapter
  • First Online:
Smart Soft-Matter Nanotubes

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Suitable combinations and sequences of amino acids result in the construction of rational three-dimensional structures, thereby exhibiting a variety of vital functions including mechanical, structural, enzymatic, chaperone, immune, storage, and transport actions. Notably, dipeptides represented by di-l-phenylalanine, although the structure is the shortest and simple as a peptide, can play a talented role in the self-assembly into nanostructures. For example, Gazit’s group has carried out pioneering work on self-assembled tubular structures from the di-phenylalanine peptide. This chapter describes the preparation, functions, and applications of the di-phenylalanine- or its analogues-based nanotubes. Self-assembly of the di-phenylalanine by diluting the 1,1,1,3,3,3-hexafluoro-2-propanol solution with water gives tough and discrete nanotube structures with high-axial ratios. First, a systematic study on molecular packing of hydrophobic dipeptides in single crystal X-ray structures by Görbitz is introduced to understand the crystal packing features for the various combinations of two hydrophobic amino acids. The author discusses many potent applications of the di-phenylalanine-based nanotubes. Representative properties and functions are turn-on fluorescence, recognition and sensing, ferroelectrics and piezoelectrics, nonlinear optical effect, quantum confinement, light harvesting, supercapacitor, mechanical reinforcement, and detection of cancer cell and neurotoxin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler-Abramovich L, Gazit E (2014) The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem Soc Rev 43:6881–6893. https://doi.org/10.1039/c4cs00164h

    Article  CAS  Google Scholar 

  2. Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300:625–627. https://doi.org/10.1126/science.1082387

    Article  CAS  Google Scholar 

  3. Song Y, Challa SR, Medforth CJ, Qiu Y, Watt RK, Pena D, Miller JE, van Swol F, Shelnutt JA (2004) Synthesis of peptide-nanotube platinum-nanoparticle composites. Chem Commun 1044–1045. https://doi.org/10.1039/B402126f

  4. Görbitz CH (2006) The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer’s beta-amyloid polypeptide. Chem Commun 2332–2334. https://doi.org/10.1039/b603080g

  5. Görbitz CH (2001) Nanotube formation by hydrophobic dipeptides. Chem Eur J 7:5153–5159. https://doi.org/10.1002/1521-3765(20011203)7:23%3c5153:Aid-Chem5153%3e3.0.Co;2-N

    Article  Google Scholar 

  6. Yan X, He Q, Wang K, Duan L, Cui Y, Li J (2007) Transition of cationic dipeptide nanotubes into vesicles and oligonucleotide delivery. Angew Chem Int Ed 46:2431–2434. https://doi.org/10.1002/anie.200603387

    Article  CAS  Google Scholar 

  7. Reches M, Gazit E (2005) Self-assembly of peptide nanotubes and amyloid-like structures by charged-termini-capped diphenylalanine peptide analogues. Isr J Chem 45:363–371. https://doi.org/10.1560/5mc0-V3dx-Ke0b-Yf3j

    Article  CAS  Google Scholar 

  8. Görbitz CH (2003) Nanotubes from hydrophobic dipeptides: pore size regulation through side chain substitution. New J Chem 27:1789–1793. https://doi.org/10.1039/b305984g

    Article  CAS  Google Scholar 

  9. Görbitz CH (2007) Microporous organic materials from hydrophobic dipeptides. Chem Eur J 13:1022–1031. https://doi.org/10.1002/chem.200601427

    Article  CAS  Google Scholar 

  10. Luo JD, Xie ZL, Lam JWY, Cheng L, Chen HY, Qiu CF, Kwok HS, Zhan XW, Liu YQ, Zhu DB, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 1740–1741. https://doi.org/10.1039/b105159h

  11. Na N, Mu X, Liu Q, Wen J, Wang F, Ouyang J (2013) Self-assembly of diphenylalanine peptides into microtubes with “turn on” fluorescence using an aggregation-induced emission molecule. Chem Commun 49:10076–10078. https://doi.org/10.1039/c3cc45320k

    Article  CAS  Google Scholar 

  12. Wang M, Xiong S, Wu X, Chu PK (2011) Effects of water molecules on photoluminescence from hierarchical peptide nanotubes and water probing capability. Small 7:2801–2807. https://doi.org/10.1002/smll.201100353

    Article  CAS  Google Scholar 

  13. Wu X, Xiong S, Wang M, Shen J, Chu PK (2012) Water-sensitive high-frequency molecular vibrations in self-assembled diphenylalanine nanotubes. J Phys Chem C 116:9793–9799. https://doi.org/10.1021/jp212087h

    Article  CAS  Google Scholar 

  14. Brites CDS, Lima PP, Silva NJO, Millan A, Amaral VS, Palacio F, Carlos LD (2012) Thermometry at the nanoscale. Nanoscale 4:4799–4829. https://doi.org/10.1039/c2nr30663h

    Article  CAS  Google Scholar 

  15. Jaque D, Vetrone F (2012) Luminescence nanothermometry. Nanoscale 4:4301–4326. https://doi.org/10.1039/c2nr30764b

    Article  CAS  Google Scholar 

  16. Gan Z, Wu X, Zhang J, Zhu X, Chu PK (2013) In situ thermal imaging and absolute temperature monitoring by luminescent diphenylalanine nanotubes. Biomacromol 14:2112–2116. https://doi.org/10.1021/bm400562c

    Article  CAS  Google Scholar 

  17. Adler-Abramovich L, Badihi-Mossberg M, Gazit E, Rishpon J (2010) Characterization of peptide-nanostructure-modified electrodes and their application for ultrasensitive environmental monitoring. Small 6:825–831. https://doi.org/10.1002/smll.200902186

    Article  CAS  Google Scholar 

  18. Yuan J, Chen J, Wu X, Fang K, Niu L (2011) A NADH biosensor based on diphenylalanine peptide/carbon nanotube nanocomposite. J Electroanal Chem 656:120–124. https://doi.org/10.1016/j.jelechem.2010.12.018

    Article  CAS  Google Scholar 

  19. Adler-Abramovich L, Aronov D, Beker P, Yevnin M, Stempler S, Buzhansky L, Rosenman G, Gazit E (2009) Self-assembled arrays of peptide nanotubes by vapour deposition. Nat Nanotechnol 4:849–854. https://doi.org/10.1038/nnano.2009.298

    Article  CAS  Google Scholar 

  20. Handelman A, Beker P, Amdursky N, Rosenman G (2012) Physics and engineering of peptide supramolecular nanostructures. PCCP 14:6391–6408. https://doi.org/10.1039/c2cp40157f

    Article  CAS  Google Scholar 

  21. Lee JS, Ryu J, Park CB (2009) Bio-inspired fabrication of superhydrophobic surfaces through peptide self-assembly. Soft Matter 5:2717–2720. https://doi.org/10.1039/b906783c

    Article  CAS  Google Scholar 

  22. Gan Z, Wu X, Zhu X, Shen J (2013) Light-induced ferroelectricity in bioinspired self-assembled diphenylalanine nanotubes/microtubes. Angew Chem Int Ed 52:2055–2059. https://doi.org/10.1002/anie.201207992

    Article  CAS  Google Scholar 

  23. Ghosh S, Mei BZ, Lubkin V, Scheinbeim JI, Newman BA, Kramer P, Bennett G, Feit N (1998) Piezoelectric response of scleral collagen. J Biomed Mater Res 39:453–457. https://doi.org/10.1002/(Sici)1097-4636(19980305)39:3%3c453:Aid-Jbm15%3e3.0.Co;2-B

    Article  CAS  Google Scholar 

  24. Kholkin A, Amdursky N, Bdikin I, Gazit E, Rosenman G (2010) Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4:610–614. https://doi.org/10.1021/nn901327v

    Article  CAS  Google Scholar 

  25. Bosne ED, Heredia A, Kopyl S, Karpinsky DV, Pinto AG, Kholkin AL (2013) Piezoelectric resonators based on self-assembled diphenylalanine microtubes. Appl Phys Lett 102: https://doi.org/10.1063/1.4793417

    Article  CAS  Google Scholar 

  26. Lee JH, Heo K, Schulz-Schonbagen K, Lee JH, Desai MS, Jin HE, Lee SW (2018) Diphenylalanine peptide nanotube energy harvesters. ACS Nano 12:8138–8144. https://doi.org/10.1021/acsnano.8b03118

    Article  CAS  Google Scholar 

  27. Handelman A, Lavrov S, Kudryavtsev A, Khatchatouriants A, Rosenberg Y, Mishina E, Rosenman G (2013) Nonlinear optical bioinspired peptide nanostructures. Adv Opt Mater 1:875–884. https://doi.org/10.1002/adom.201300282

    Article  Google Scholar 

  28. Amdursky N, Beker P, Koren I, Bank-Srour B, Mishina E, Semin S, Rasing T, Rosenberg Y, Barkay Z, Gazit E, Rosenman G (2011) Structural transition in peptide nanotubes. Biomacromol 12:1349–1354. https://doi.org/10.1021/bm200117w

    Article  CAS  Google Scholar 

  29. Yan X, Li J, Mohwald H (2011) Self-assembly of hexagonal peptide microtubes and their optical waveguiding. Adv Mater 23:2796–2801. https://doi.org/10.1002/adma.201100353

    Article  CAS  Google Scholar 

  30. Handelman A, Apter B, Turko N, Rosenman G (2016) Linear and nonlinear optical waveguiding in bio-inspired peptide nanotubes. Acta Biomater 30:72–77. https://doi.org/10.1016/j.actbio.2015.11.004

    Article  CAS  Google Scholar 

  31. Amdursky N, Molotskii M, Aronov D, Adler-Abramovich L, Gazit E, Rosenman G (2009) Blue luminescence based on quantum confinement at peptide nanotubes. Nano Lett 9:3111–3115. https://doi.org/10.1021/nl9008265

    Article  CAS  Google Scholar 

  32. Amdursky N, Gazit E, Rosenman G (2010) Quantum confinement in self-assembled bioinspired peptide hydrogels. Adv Mater 22:2311–2315. https://doi.org/10.1002/adma.200904034

    Article  CAS  Google Scholar 

  33. Wasielewski MR (2009) Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc Chem Res 42:1910–1921. https://doi.org/10.1021/ar9001735

    Article  CAS  Google Scholar 

  34. Kim JH, Lee M, Lee JS, Park CB (2012) Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis. Angew Chem Int Ed 51:517–520. https://doi.org/10.1002/anie.201103244

    Article  CAS  Google Scholar 

  35. Beker P, Koren I, Amdursky N, Gazit E, Rosenman G (2010) Bioinspired peptide nanotubes as supercapacitor electrodes. J Mater Sci 45:6374–6378. https://doi.org/10.1007/s10853-010-4624-z

    Article  CAS  Google Scholar 

  36. Beker P, Rosenman G (2010) Bioinspired nanostructural peptide materials for supercapacitor electrodes. J Mater Res 25:1661–1666. https://doi.org/10.1557/Jmr.2010.0213

    Article  CAS  Google Scholar 

  37. Goldshtein K, Golodnitsky D, Peled E, Adler-Abramovich L, Gazit E, Khatun S, Stallworth P, Greenbaum S (2012) Effect of peptide nanotube filler on structural and ion-transport properties of solid polymer electrolytes. Solid State Ionics 220:39–46. https://doi.org/10.1016/j.ssi.2012.05.028

    Article  CAS  Google Scholar 

  38. Kol N, Adler-Abramovich L, Barlam D, Shneck RZ, Gazit E, Rousso I (2005) Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett 5:1343–1346. https://doi.org/10.1021/nl0505896

    Article  CAS  Google Scholar 

  39. Niu L, Chen X, Allen S, Tendler SJB (2007) Using the bending beam model to estimate the elasticity of diphenylalanine nanotubes. Langmuir 23:7443–7446. https://doi.org/10.1021/la7010106

    Article  CAS  Google Scholar 

  40. Knowles TPJ, Buehler MJ (2011) Nanomechanics of functional and pathological amyloid materials. Nat Nanotechnol 6:469–479. https://doi.org/10.1038/Nnano.2011.102

    Article  CAS  Google Scholar 

  41. Azuri I, Adler-Abramovich L, Gazit E, Hod O, Kronik L (2014) Why are diphenylalanine-based peptide nanostructures so rigid? insights from first principles calculations. J Am Chem Soc 136:963–969. https://doi.org/10.1021/ja408713x

    Article  CAS  Google Scholar 

  42. Even N, Adler-Abramovich L, Buzhansky L, Dodiuk H, Gazit E (2011) Improvement of the mechanical properties of epoxy by peptide nanotube fillers. Small 7:1007–1011. https://doi.org/10.1002/smll.201001940

    Article  CAS  Google Scholar 

  43. Castillo JJ, Svendsen WE, Rozlosnik N, Escobar P, Martineza F, Castillo-Leon J (2013) Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode. Analyst 138:1026–1031. https://doi.org/10.1039/c2an36121c

    Article  CAS  Google Scholar 

  44. Wang H, Wang T, Ye YX, Zhang YX, Yang PH, Cai HH, Cai JY (2012) Construction of an electrochemical cytosensor based on polyaniline nanofiber/gold nanoparticle interface and application to detection of cancer cells. Chin J Anal Chem 40:184–190. https://doi.org/10.1016/S1872-2040(11)60527-6

    Article  CAS  Google Scholar 

  45. Zheng TT, Zhang R, Zou L, Zhu JJ (2012) A label-free cytosensor for the enhanced electrochemical detection of cancer cells using polydopamine-coated carbon nanotubes. Analyst 137:1316–1318. https://doi.org/10.1039/c2an16023d

    Article  CAS  Google Scholar 

  46. Qian Z, Bai HJ, Wang GL, Xu JJ, Chen HY (2010) A photoelectrochemical sensor based on CdS-polyamidoamine nano-composite film for cell capture and detection. Biosens Bioelectron 25:2045–2050. https://doi.org/10.1016/j.bios.2010.01.036

    Article  CAS  Google Scholar 

  47. Ryu J, Lim SY, Park CB (2009) Photoluminescent peptide nanotubles. Adv Mater 21:1577–1581. https://doi.org/10.1002/adma.200802700

    Article  CAS  Google Scholar 

  48. Kim JH, Ryu J, Park CB (2011) Selective detection of neurotoxin by photoluminescent peptide nanotubes. Small 7:718–722. https://doi.org/10.1002/smll.201002107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimi Shimizu .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimizu, T. (2021). Di-phenylalanine-Based Nanotubes. In: Smart Soft-Matter Nanotubes. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-2685-2_4

Download citation

Publish with us

Policies and ethics