Skip to main content

Lipid Nanotubes

  • Chapter
  • First Online:
Smart Soft-Matter Nanotubes

Part of the book series: Nanostructure Science and Technology ((NST))

  • 304 Accesses

Abstract

The dawn of soft-matter nanotube (SMNT) begins with concurrent discovery for the self-assembly of hollow tubular structures from lipid derivatives in Japan as well as USA. Kunitake and co-workers demonstrated the spontaneous assembly of SMNTs from chiral, double-chain ammonium amphiphile in 1984. Both Ihara’s group and Yager, Shoen, and co-workers also reported on the self-assembly of SMNTs from glutamic acid amphiphile and diacetylenic phospholipids, respectively. This chapter describes the self-assembly of amphiphilic molecules, i.e., lipids into tubular structures in liquid media. The amphiphiles, therefore, comprise both hydrophilic (solvophilic) and hydrophobic (solvophobic) moieties in the same molecule. For example, glutamic acid derivatives, bile acid derivatives, and glycolipids play an important role in acting as lipid components that can undergo the self-assembly into nanotubes. Their formation pathways pass mainly through various intermediate structures, e.g., one-dimensional sheets, twisted ribbons, helically coiled ribbons, and two-dimensional curved sheets. In addition to the rigidity of a representative lipid nanotube, the properties and functions, e.g., solubilization and refolding of protein, light-harvesting antenna system, chiral sensing of amino acids, enhancement of photocatalytic activity, photoinduced morphological transformation, and the preparation of hydrogel fiber mats are introduced as representative applications of the lipid nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu X, Li Y, Duan P, Liu M (2010) Self-assembled ultralong chiral nanotubes and tuning of their chirality through the mixing of enantiomeric components. Chem Eur J 16:8034–8040. https://doi.org/10.1002/chem.201000595

    Article  CAS  Google Scholar 

  2. Green MM, Garetz BA, Munoz B, Chang HP, Hoke S, Cooks RG (1995) Majority rules in the copolymerization of mirror-image isomers. J Am Chem Soc 117:4181–4182. https://doi.org/10.1021/ja00119a039

    Article  CAS  Google Scholar 

  3. Smulders MMJ, Stals PJM, Mes T, Paffen TFE, Schenning APHJ, Palmans ARA, Meijer EW (2010) Probing the limits of the majority-rules principle in a dynamic supramolecular polymer. J Am Chem Soc 132:620–626. https://doi.org/10.1021/ja9080875

    Article  CAS  Google Scholar 

  4. Wang X, Duan P, Liu M (2014) Self-assembly of π-conjugated gelators into emissive chiral nanotubes: emission enhancement and chiral detection. Chem Asian J 9:770–778. https://doi.org/10.1002/asia.201301518

    Article  CAS  Google Scholar 

  5. Zhang L, Liu C, Jin Q, Zhu X, Liu M (2013) Pyrene-Functionalized organogel and spacer effect: from emissive nanofiber to nanotube and inversion of supramolecular chirality. Soft Matter 9:7966–7973. https://doi.org/10.1039/C3sm51204e

    Article  CAS  Google Scholar 

  6. Ji L, Sang Y, Ouyang G, Yang D, Duan P, Jiang Y, Liu M (2019) Cooperative chirality and sequential energy transfer in a supramolecular light-harvesting nanotube. Angew Chem Int Ed 58:844–848. https://doi.org/10.1002/anie.201812642

    Article  CAS  Google Scholar 

  7. Goto T, Okazaki Y, Ueki M, Kuwahara Y, Takafuji M, Oda R, Ihara H (2017) Induction of strong and tunable circularly polarized luminescence of nonchiral, nonmetal, low-molecular-weight fluorophores using chiral nanotemplates. Angew Chem Int Ed 56:2989–2993. https://doi.org/10.1002/anie.201612331

    Article  CAS  Google Scholar 

  8. Wei X, Su X, Cao P, Liu X, Chang WR, Li M, Zhang X, Liu Z (2016) Structure of spinach photosystem II-LHCII supercomplex at 3.2 angstrom resolution. Nature 534:69–74. https://doi.org/10.1038/nature18020

    Article  CAS  Google Scholar 

  9. Terech P, Jean B, Ne F (2006) Hexagonally ordered ammonium lithocholate self-assembled nanotubes with highly monodisperse sections. Adv Mater 18:1571–1574. https://doi.org/10.1002/adma.200502358

    Article  CAS  Google Scholar 

  10. Terech P, Velu SKP, Pernot P, Wiegart L (2012) Salt effects in the formation of self-assembled lithocholate helical ribbons and tubes. J Phys Chem B 116:11344–11355. https://doi.org/10.1021/jp305365m

    Article  CAS  Google Scholar 

  11. Anelli PL, Lattuada L, Uggeri F (1998) One-pot Mitsunobu-Staudinger preparation of 3-aminocholan-24-oic acid esters from 3-hydroxycholan-24-oic acid esters. Synth Commun 28:109–117. https://doi.org/10.1080/00397919808005079

    Article  CAS  Google Scholar 

  12. Babu P, Maitra U (2005) Synthesis and in vitro cholesterol dissolution by 23-and 24-phosphonobile acids. Steroids 70:681–689. https://doi.org/10.1016/j.steroids.2005.03.008

    Article  CAS  Google Scholar 

  13. Manghisi N, Leggio C, Jover A, Meijide F, Pavel NV, Tellini VHS, Tato JV, Agostino RG, Galantini L (2010) Catanionic tubules with tunable charge. Angew Chem Int Ed 49:6604–6607. https://doi.org/10.1002/anie.201000951

    Article  CAS  Google Scholar 

  14. Travaglini L, D’Annibale A, Schillen K, Olsson U, Sennato S, Pavel NV, Galantini L (2012) Amino acid-bile acid based molecules: extremely narrow surfactant nanotubes formed by a phenylalanine-substituted cholic acid. Chem Commun 48:12011–12013. https://doi.org/10.1039/c2cc36030f

    Article  CAS  Google Scholar 

  15. di Gregorio MC, Pavel NV, Jover A, Meijide F, Tato JV, Tellini VHS, Vargas AA, Regev O, Kasavi Y, Schillen K, Galantini L (2013) pH sensitive tubules of a bile acid derivative: a tubule opening by release of wall leaves. PCCP 15:7560–7566. https://doi.org/10.1039/c3cp00121k

    Article  CAS  Google Scholar 

  16. Shimizu T (2018) Self-assembly of discrete organic nanotubes. Bull Chem Soc Jpn 91:623–668. https://doi.org/10.1246/bcsj.20170424

    Article  CAS  Google Scholar 

  17. di Gregorio MC, Varenik M, Gubitosi M, Travaglini L, Pavel NV, Jover A, Meijide F, Regev O, Galantini L (2015) Multi stimuli response of a single surfactant presenting a rich self-assembly behavior. RSC Adv 5:37800–37806. https://doi.org/10.1039/c5ra01394a

    Article  Google Scholar 

  18. Kameta N, Minamikawa H, Masuda M (2011) Supramolecular organic nanotubes: how to utilize the inner nanospace and the outer space. Soft Matter 7:4539–4561. https://doi.org/10.1039/c0sm01559h

    Article  CAS  Google Scholar 

  19. Gubitosi M, Travaglini L, di Gregorio MC, Pavel NV, Tato JV, Sennato S, Olsson U, Schillen K, Galantini L (2015) Tailoring supramolecular nanotubes by bile salt based surfactant mixtures. Angew Chem Int Ed 54:7018–7021. https://doi.org/10.1002/anie.201500445

    Article  CAS  Google Scholar 

  20. Zhang X, Zou J, Tamhane K, Kobzeff FF, Fang J (2010) Self-assembly of pH-switchable spiral tubes: supramolecular chemical springs. Small 6:217–220. https://doi.org/10.1002/smll.200901067

    Article  CAS  Google Scholar 

  21. Lu Q, Kim Y, Bassim N, Collins GE (2015) Impact of confinement on proteins concentrated in lithocholic acid based organic nanotubes. J Colloid Interface Sci 454:97–104. https://doi.org/10.1016/j.jcis.2015.05.004

    Article  CAS  Google Scholar 

  22. Kameta N, Minamikawa H, Someya Y, Yui H, Masuda M, Shimizu T (2010) Confinement effect of organic nanotubes toward green fluorescent protein (GFP) depending on the inner diameter size. Chem Eur J 16:4217–4223. https://doi.org/10.1002/chem.200903413

    Article  CAS  Google Scholar 

  23. Lu Q, Kim Y, Bassim N, Raman N, Collins GE (2016) Catalytic activity and thermal stability of horseradish peroxidase encapsulated in self-assembled organic nanotubes. Analyst 141:2191–2198. https://doi.org/10.1039/c5an02655e

    Article  CAS  Google Scholar 

  24. Liang W, He S, Fang J (2014) Self-assembly of J-aggregate nanotubes and their applications for sensing dopamine. Langmuir 30:805–811. https://doi.org/10.1021/la404022q

    Article  CAS  Google Scholar 

  25. Zhang X, Bera T, Liang W, Fang J (2011) Longitudinal zipping/unzipping of self-assembled organic tubes. J Phys Chem B 115:14445–14449. https://doi.org/10.1021/Jp2064276

    Article  CAS  Google Scholar 

  26. Shimizu T, Masuda M, Minamikawa H (2005) Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev 105:1401–1443. https://doi.org/10.1021/cr030072j

    Article  CAS  Google Scholar 

  27. John G, Masuda M, Okada Y, Yase K, Shimizu T (2001) Nanotube formation from renewable resources via coiled nanofibers. Adv Mater 13:715–718. https://doi.org/10.1002/1521-4095(200105)13:10%3c715::AID-ADMA715%3e3.0.CO;2-Z

    Article  CAS  Google Scholar 

  28. John G, Jung JH, Minamikawa H, Yoshida K, Shimizu T (2002) Morphological control of helical solid bilayers in high-axial-ratio nanostructures through binary self-assembly. Chem Eur J 8:5494–5500. https://doi.org/10.1002/1521-3765(20021202)8:23%3c5494::AID-CHEM5494%3e3.0.CO;2-P

    Article  CAS  Google Scholar 

  29. Jung JH, John G, Yoshida K, Shimizu T (2002) Self-Assembling structures of long-chain phenyl glucoside influenced by the introduction of double bonds. J Am Chem Soc 124:10674–10675. https://doi.org/10.1021/ja020752o

    Article  CAS  Google Scholar 

  30. Kamiya S, Minamikawa H, Jung JH, Yang B, Masuda M, Shimizu T (2005) Molecular structure of glucopyranosylamide lipid and nanotube morphology. Langmuir 21:743–750. https://doi.org/10.1021/la047765v

    Article  CAS  Google Scholar 

  31. Frusawa H, Fukagawa A, Ikeda Y, Araki J, Ito K, John G, Shimizu T (2003) Aligning a single-lipid nanotube with moderate stiffness. Angew Chem Int Ed 42:72–74. https://doi.org/10.1002/anie.200390056

    Article  Google Scholar 

  32. Felgner H, Frank R, Schliwa M (1996) Flexural rigidity of microtubules measured with the use of optical tweezers. J Cell Sci 109:509–516

    Article  CAS  Google Scholar 

  33. Karlsson A, Karlsson R, Karlsson M, Cans A-S, Stroemberg A, Ryttsen F, Orwar O (2001) Networks of nanotubes and containers. Nature 409:150–152. https://doi.org/10.1038/35051656

    Article  CAS  Google Scholar 

  34. Nogawa K, Tagawa Y, Nakajima M, Arai F, Shimizu T, Kamiya S, Fukuda T (2007) Development of novel nanopipette with a lipid nanotube as nanochannel. J Robot Mechatr 19:528–534. https://doi.org/10.20965/jrm.2007.p0528

  35. Giulieri F, Guillod F, Greiner J, Krafft M-P (1996) Anionic Glucophospholipids-a new family of tubule-forming amphiphiles. Chem Eur J 2:1335–1339. https://doi.org/10.1002/chem.19960021022

    Article  CAS  Google Scholar 

  36. Imae T, Funayama K, Krafft MP, Giulieri F, Tada T, Matsumoto T (1999) Small-angle scattering and electron microscopy investigation of nanotubules made from a perfluoroalkylated glucophospholipid. J Colloid Interface Sci 212:330–337. https://doi.org/10.1006/jcis.1999.6094

    Article  CAS  Google Scholar 

  37. Kameta N, Asakawa M, Masuda M, Shimizu T (2011) Self-Assembled organic nanotubes embedding hydrophobic molecules within solid bilayer membranes. Soft Matter 7:85–90. https://doi.org/10.1039/C0sm00375a

    Article  CAS  Google Scholar 

  38. Kameta N, Matsuzawa T, Yaoi K, Fukuda J, Masuda M (2017) Glycolipid-based nanostructures with thermal-phase transition behavior functioning as solubilizers and refolding accelerators for protein aggregates. Soft Matter 13:3084–3090. https://doi.org/10.1039/c7sm00310b

    Article  CAS  Google Scholar 

  39. Ishikawa K, Kameta N, Aoyagi M, Asakawa M, Shimizu T (2013) Soft nanotubes with a hydrophobic channel hybridized with au nanoparticles: photothermal dispersion/aggregation control of C60 in Water. Adv Funct Mater 23:1677–1683. https://doi.org/10.1002/adfm.201202160

    Article  CAS  Google Scholar 

  40. Kameta N, Ishikawa K, Masuda M, Asakawa M, Shimizu T (2012) Soft nanotubes acting as a light-harvesting antenna system. Chem Mater 24:209–214. https://doi.org/10.1021/Cm2030526

    Article  CAS  Google Scholar 

  41. Kameta N, Masuda M, Shimizu T (2015) Qualitative/chiral sensing of amino acids by naked-eye fluorescence change based on morphological transformation and hierarchizing in supramolecular assemblies of pyrene-conjugated glycolipids. Chem Commun 51:11104–11107. https://doi.org/10.1039/c5cc03843j

    Article  CAS  Google Scholar 

  42. Kameta N, Aoyagi M, Asakawa M (2017) Enhancement of the photocatalytic activity of Rhenium(I) complexes by encapsulation in light-harvesting soft nanotubes. Chem Commun 53:10116–10119. https://doi.org/10.1039/c7cc05337a

    Article  CAS  Google Scholar 

  43. Liu T, Diemann E, Li H, Dress AWM, Muller A (2003) Self-assembly in aqueous solution of wheel-shaped Mo-154 oxide clusters into vesicles. Nature 426:59–62. https://doi.org/10.1038/nature02036

    Article  CAS  Google Scholar 

  44. Wu L, Lal J, Simon KA, Burton EA, Luk YY (2009) Nonamphiphilic assembly in water: polymorphic nature, thread structure, and thermodynamic incompatibility. J Am Chem Soc 131:7430–7443. https://doi.org/10.1021/ja9015149

    Article  CAS  Google Scholar 

  45. Jiang L, Peng Y, Yan Y, Deng M, Wang Y, Huang J (2010) Annular Ring” microtubes formed by SDS@2 beta-CD complexes in aqueous solution. Soft Matter 6:1731–1736. https://doi.org/10.1039/b920608f

    Article  CAS  Google Scholar 

  46. Jiang L, Peng Y, Yan Y, Huang J (2011) Aqueous self-assembly of SDS@2 beta-CD complexes: lamellae and vesicles. Soft Matter 7:1726–1731. https://doi.org/10.1039/c0sm00917b

    Article  CAS  Google Scholar 

  47. Khaykovich B, Hossain C, McManus JJ, Lomakin A, Moncton DE, Benedek GB (2007) Structure of cholesterol helical ribbons and self-assembling biological springs. Proc Natl Acad Sci USA 104:9656–9660. https://doi.org/10.1073/pnas.0702967104

    Article  CAS  Google Scholar 

  48. Aime C, Tamoto R, Satoh T, Grelard A, Dufourc EJ, Buffeteau T, Ihara H, Oda R (2009) Nucleotide-promoted morphogenesis in amphiphile assemblies: kinetic control of micrometric helix formation. Langmuir 25:8489–8496. https://doi.org/10.1021/la8043297

    Article  CAS  Google Scholar 

  49. Pescador P, Brodersen N, Scheidt HA, Loew M, Holland G, Bannert N, Liebscher J, Herrmann A, Huster D, Arbuzova A (2010) Microtubes self-assembled from a cholesterol-modified nucleoside. Chem Commun 46:5358–5360. https://doi.org/10.1039/c0cc00562b

    Article  CAS  Google Scholar 

  50. Kameta N, Tanaka A, Akiyama H, Minamikawa H, Masuda M, Shimizu T (2011) Photoresponsive soft nanotubes for controlled guest release. Chem Eur J 17:5251–5255. https://doi.org/10.1002/chem.201100179

    Article  CAS  Google Scholar 

  51. Kameta N, Masuda M, Shimizu T (2015) Photoinduced morphological transformations of soft nanotubes. Chem Eur J 21:8832–8839. https://doi.org/10.1002/chem.201500430

    Article  CAS  Google Scholar 

  52. Kameta N, Akiyama H, Masuda M, Shimizu T (2016) Effect of photoinduced size changes on protein refolding and transport abilities of soft nanotubes. Chem Eur J 22:7198–7205. https://doi.org/10.1002/chem.201504613

    Article  CAS  Google Scholar 

  53. Barclay TG, Constantopoulos K, Zhang W, Fujiki M, Matisons JG (2012) Chiral Self-assembly of designed amphiphiles: optimization for nanotube formation. Langmuir 28:14172–14179. https://doi.org/10.1021/la3030606

    Article  CAS  Google Scholar 

  54. Waugh RE, Hochmuth RM (1987) Mechanical equilibrium of thick, hollow, liquid membrane cylinders. Biophys J 1987:391–400. https://doi.org/10.1016/S0006-3495(87)83227-7

    Article  Google Scholar 

  55. Evans E, Bowman H, Leung A, Needham D, Tirrell D (1996) Biomembrane templates for nanoscale conduits and networks. Science 273:933–935. https://doi.org/10.1126/science.273.5277.933

    Article  CAS  Google Scholar 

  56. Karlsson M, Nolkrantz K, Davidson MJ, Stroemberg A, Ryttsen F, Akerman B, Orwar O (2000) Electroinjection of colloid particles and biopolymers into single unilamellar liposomes and cells for bioanalytical applications. Anal Chem 72:5857–5862. https://doi.org/10.1021/ac0003246

    Article  CAS  Google Scholar 

  57. Laplante JP, Pemberton M, Hjelmfelt A, Ross J (1995) Experiments on pattern-recognition by chemical-kinetics. J Phys Chem 99:10063–10065. https://doi.org/10.1021/j100025a001

    Article  CAS  Google Scholar 

  58. Sciaky N, Presley J, Smith C, Zaal KJM, Cole N, Moreira JE, Terasaki M, Siggia E, Lippincott-Schwartz J (1997) Golgi tubule traffic and the effects of brefeldin a visualized in living cells. J Cell Biol 139:1137–1155. https://doi.org/10.1083/jcb.139.5.1137

    Article  CAS  Google Scholar 

  59. Lobovkina T, Jesorka A, Onfelt B, Lagerwall J, Dommersnes P, Orwar O (2011) Soft-matter nanotubes. In: Hayden O, Nielsch K (eds) Molecular- and nano-tubes, pp 75–125. https://doi.org/10.1007/978-1-4419-9443-1_4

  60. Davidson M, Karlsson M, Sinclair J, Sott K, Orwar O (2003) Nanotube-vesicle networks with functionalized membranes and interiors. J Am Chem Soc 125:374–378. https://doi.org/10.1021/ja027699o

    Article  CAS  Google Scholar 

  61. Sekine Y, Abe K, Shimizu A, Sasaki Y, Sawada S, Akiyoshi K (2012) Shear flow-induced nanotubulation of surface-immobilized liposomes. RSC Adv 2:2682–2684. https://doi.org/10.1039/C2ra00629d

    Article  CAS  Google Scholar 

  62. Yager P, Schoen PE (1984) Formation of tubules by polymerizable surfactant. Mol Cryst Liq Cryst 106:371–381. https://doi.org/10.1080/00268948408071454

    Article  CAS  Google Scholar 

  63. Lee SB, Koepsel R, Stolz DB, Warriner HE, Russell AJ (2004) Self-assembly of biocidal nanotubes from a single-chain diacetylene amine salt. J Am Chem Soc 126:13400–13405. https://doi.org/10.1021/ja048463i

    Article  CAS  Google Scholar 

  64. Barclay T, Constantopoulos K, Matisons J (2011) Self-assembled lipid nanotubes by rational design. J Mater Res 26:322–335. https://doi.org/10.1557/Jmr.2010.3

    Article  CAS  Google Scholar 

  65. Perino A, Schmutz M, Meunier S, Mésini PJ, Wagner A (2011) Self-assembled nanotubes and helical tapes from diacetylene nonionic amphiphiles. Structural studies before and after polymerization. Langmuir 27:12149–12155. https://doi.org/10.1021/la202162q

    Article  CAS  Google Scholar 

  66. Kawano S, Urban MW (2012) Expandable temperature-responsive polymeric nanotubes. ACS Macro Lett 1:232–235. https://doi.org/10.1021/mz2000303

    Article  CAS  Google Scholar 

  67. Assali M, Cid JJ, Fernandez I, Khiar N (2013) Supramolecular diversity through click chemistry: switching from nanomicelles to 1D-nanotubes and tridimensional hydrogels. Chem Mater 25:4250–4261. https://doi.org/10.1021/cm4022613

    Article  CAS  Google Scholar 

  68. Zhang L, Li H, Ha CS, Suh H, Kim I (2010) Fabrication of nanotubules and microspheres from the self-assembly of amphiphilic monochain stearic acid derivatives. Langmuir 26:17890–17895. https://doi.org/10.1021/la103480p

    Article  CAS  Google Scholar 

  69. Bernet A, Behr M, Schmidt HW (2011) Supramolecular nanotube-based fiber mats by self-assembly of a tailored amphiphilic low molecular weight hydrogelator. Soft Matter 7:1058–1065. https://doi.org/10.1039/C0sm00456a

    Article  CAS  Google Scholar 

  70. Lalitha K, Prasad YS, Maheswari CU, Sridharan V, John G, Nagarajan S (2015) Stimuli responsive hydrogels derived from a renewable resource: synthesis, self-assembly in water and application in drug delivery. J Mater Chem B 3:5560–5568. https://doi.org/10.1039/c5tb00864f

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimi Shimizu .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimizu, T. (2021). Lipid Nanotubes. In: Smart Soft-Matter Nanotubes. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-2685-2_2

Download citation

Publish with us

Policies and ethics