Skip to main content

Development of Novel Anti-infective Formulations for Wound Disinfection

  • Chapter
  • First Online:
Wound Healing Research
  • 1411 Accesses

Abstract

Wound infection and disinfection mainly rely on the type of wounds and the development of a novel and effective way of wound repairing or healing materials. Development of novel anti-infective formulations depends on the type of wounds and mechanism of healing the wound. Nowadays, wound healing and management is quite a challenging area of research, whereas development of anti-infective formulations needs an extensive information on the pathogenesis of wound infection and its healing. This seems to be a much more complicated process which is controlled by different exogenous and endogenous factors. In the elderly, systemic disorders like diabetes, immunosuppression, venous disease, and metabolic deficiencies also affect the healing of wounds. Apart from this, accumulation of some pathogenic bacteria in skin wounds occurs where they are aggregated and immobilized in an adhesive matrix of extracellular polymeric substances which leads to the weak penetration of antibiotics and subsequently makes it difficult to eradicate the bacteria completely. This happens due to the host clearance mechanisms, i.e., antibodies and phagocytes through the microbial biofilm. In addition, toxins produced from bacteria lead to an excessive, detrimental inflammatory response such as development of antibiotic resistance and delayed wound healing followed by prolonged hospitalization. Therefore, wound infections and its healing have emerged as a big cause of death and burden toward the healthcare system. Based on the above scenario, different anti-infective therapies and formulations were suggested which will be described in this chapter. Several antimicrobial therapies as well as antimicrobials are used for wound healing which is discussed in this chapter. Besides this, some naturally derived antimicrobials such as essential oil and honey also play a key role in curing wounds. In addition, nanoparticles also help in wound healing by an excellent approach to speeding up the recovery of acute and chronic wounds, by energizing proper movement through the different phases of healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdillahi SM, Balvanović S, Baumgarten M, Mörgelin M (2012) Collagen VI encodes antimicrobial activity: novel innate host defense properties of the extracellular matrix. J Innate Immun 4:371–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agyare C, Duah Y, Oppong E, Hensel A, Oteng S, Appiah T (2016) Review: African medicinal plants with wound healing properties. J Ethnopharmacol 177:85–100

    Article  CAS  PubMed  Google Scholar 

  • Ahire JJ, Robertson DD, van Reenen AJ, Dicks LMT (2017) Polyethylene oxide (PEO)-hyaluronic acid (HA) nanofibers with kanamycin inhibits the growth of listeria monocytogenes. Biomed Pharmacother 86:143–148

    Article  CAS  PubMed  Google Scholar 

  • Ahmad Z (2010) The uses and properties of almond oil. Complement Ther Clin Pract 16(1):10–12

    Article  PubMed  Google Scholar 

  • Altiok D, Altiok E, Tihminlioglu F (2010) Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. J Mater Sci Mater Med 21:2227–2236

    Article  CAS  PubMed  Google Scholar 

  • Ammar AH, Bouajila J, Lebrihi A, Mathieu F, Romdhane M, Zagrouba F (2012) Chemical composition and in vitro antimicrobial and antioxidant activities of Citrus aurantium l. flowers essential oil (Neroli oil). Pak J Biol Sci 15(21):1034–1040

    Article  PubMed  Google Scholar 

  • Ammon HPT (2006 Oct) Boswellic acids in chronic inflammatory diseases. Planta Med 72(12):1100–1116

    Article  CAS  PubMed  Google Scholar 

  • Anjum S, Arora A, Alam MS, Gupta B (2016) Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int J Pharm 508:92–101

    Article  CAS  PubMed  Google Scholar 

  • Appendino G, Ottino M, Marquez N, Bianchi F, Giana A, Ballero M, Sterner O, Fiebich BL, Munoz E (2007) Arzanol, an Anti-inflammatory and Anti-HIV-1 Phloroglucinol α-Pyrone from Helichrysum italicum ssp. Microphyllum. Nat. Prod 70(4):608–612

    Article  CAS  Google Scholar 

  • Ashkarran AA, Ghavami M, Aghaverdi H, Stroeve P, Mahmoudi M (2012) Bacterial effects and protein corona evaluations: crucial ignored factors for prediction of bio-efficacy of various forms of silver nanoparticles. Chem Res Toxicol 25:1231–1242

    Article  CAS  PubMed  Google Scholar 

  • Aumeeruddy-Elalfi Z, Mahomoodally M (2016) Chapter: Extraction techniques and pharmacological potential of essential oils from medicinal and aromatic plants of Mauritius. In: Peters M (ed) Essential oils: historical significance, chemical composition and medicinal uses and benefits. Nova Publisher, Hauppauge, NY, pp 51–80. isbn:978-1-63484-367-6

    Google Scholar 

  • Aumeeruddy-Elalfi Z, Gurib-Fakim A, Mahomoodally M (2016) Chemical composition, antimicrobial and antibiotic potentiating activity of essential oils from 10 tropical medicinal plants from Mauritius. J Herb Med 6:88–95

    Article  Google Scholar 

  • Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608

    Article  CAS  PubMed  Google Scholar 

  • Bai M-Y, Chou T-C, Tsai J-C, Yu W-C (2014) The effect of active ingredient-containing chitosan/ polycaprolactone nonwoven mat on wound healing: in vitro and in vivo studies. J Biomed Mater Res Part A 102:2324–2333

    Article  CAS  Google Scholar 

  • Boateng J, Diunase KN (2015) Comparing the antibacterial and functional properties of Cameroonian and Manuka honeys for potential wound healing—have we come full cycle in dealing with antibiotic resistance? Molecules 20:16068–16084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89:3503–3521

    Article  CAS  PubMed  Google Scholar 

  • Boukhatem MN, Kameli A, Ferhat MA, Saidi F, Mekarnia M (2013) Rose geranium essential oil as a source of new and safe anti-inflammatory drugs. Libyan J Med 8(1):22520

    Article  PubMed  Google Scholar 

  • Breidenstein EB, de la Fuente-Nunez C, Hancock RE (2011) Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19:419–426

    Article  CAS  PubMed  Google Scholar 

  • Broughton G 2nd, Janis JE, Attinger CE (2006) The basic science of wound healing (retraction of Witte M., Barbul A. In: Surg Clin North Am 1997; 77:509-528). Plast Reconstr Surg 117(7 Suppl):12S–34S

    Article  CAS  PubMed  Google Scholar 

  • Bulman SE, Tronci G, Goswami P, Carr C, Russell SJ (2017) Antibacterial properties of non-woven wound dressings coated with Manuka honey or methylglyoxal. Materials 10:954

    Article  PubMed Central  CAS  Google Scholar 

  • Campos AC, Groth AK, Branco AB (2008) Assessment and nutritional aspects of wound healing. Curr Opin Clin Nutr Metab Care 11:281–288

    Article  PubMed  Google Scholar 

  • Chávez-González ML, Rodríguez-Herrera R, Aguilar CN (2016) Chapter 11—essential oils: a natural alternative to combat antibiotics resistance. In: Antibiotic resistance. Mechanisms and new antimicrobial approaches. Elsevier Science, New York, NY, pp 227–237

    Google Scholar 

  • Contardi M, Heredia-Guerrero JA, Perotto G, Valentini P, Pompa PP, Spanò R, Goldonic L, Bertorelli R, Athanassiou A, Bayera IS (2017) Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. Eur J Pharm Sci 104:133–144. https://doi.org/10.1016/j.ejps.2017.03.044

    Article  CAS  PubMed  Google Scholar 

  • Cooper R (2014) Honey as an effective antimicrobial treatment for chronic wounds: Is there a place for it in modern medicine? Chronic Wound Care Manag Res 1:15–22

    Article  Google Scholar 

  • Cutting KF, White RJ (2005) Criteria for identifying wound infection—revisited. Ostomy Wound Manage 51:28–34. https://www.prnewswire.com/news-releases/advanced-wound-care-products-market-global-industry-analysis-trends-market-size-and-forecasts-up-to-2023-300558761.html

    PubMed  Google Scholar 

  • Dorica-Mirela S, Ionel J (2009) Biologically active natural peptides. J Agroaliment Processes Technol 15:484–499

    CAS  Google Scholar 

  • Edmondson M, Newall N, Carville K, Smith J, Riley TV, Carson CF (2011) Uncontrolled, open-label, pilot study of tea tree (Melaleuca alternifolia) oil solution in the decolonisation of methicillin-resistant Staphylococcus aureus positive wounds and its influence on wound healing. Int Wound J 8:375–384

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards R, Harding KG (2004) Bacteria and wound healing. Curr Opin Infect Dis 17:91–96

    Article  PubMed  Google Scholar 

  • Etebu E, Arikekpar I (2016) Antibiotics: classification and mechanisms of action with emphasis on molecular perspectives. Int J Appl Microbiol Biotechnol Res 4:90–101

    Google Scholar 

  • Evandri MG, Battinelli L, Daniele C, Mastrangelo S, Bolle P, Mazzanti G (2005) The antimutagenic activity of Lavandula angustifolia (lavender) essential oil in the bacterial reverse mutation assay. Food Chem Toxicol 43:1381–1387

    Article  CAS  PubMed  Google Scholar 

  • Fatemeh F, Masoumeh M, Sanaz H (2011) Phytochemical analysis and antioxidant activity of Hyssopus officinalis L from Iran. Adv Pharm Bull 1(2):63–67

    Google Scholar 

  • Felgueiras HP, Amorim MT (2017a) Electrospun polymeric dressings functionalized with antimicrobial peptides and collagen type I for enhanced wound healing. IOP Conf Series Mater Sci Eng 254:062004

    Article  Google Scholar 

  • Felgueiras HP, Amorim MT (2017b) Functionalization of electrospun polymeric wound dressings with antimicrobial peptides. Colloids Surf B: Biointerfaces 156:133–148

    Article  CAS  PubMed  Google Scholar 

  • Friedman ND, Temkin E, Carmeli Y (2016) The negative impact of antibiotic resistance. Clin Microbiol Infect 22:416–422

    Article  CAS  PubMed  Google Scholar 

  • Ganz T (1987) Extracellular release of antimicrobial defensins by human polymorphonuclear leukocytes. Infect Immun 55:568–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K et al (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76:1427–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghrab F, Djemaa B, Bellassoued K, Zouari S, El Feki A, Ammar E (2016 Nov) Antioxidant and wound healing activity of Lavandula aspic L. ointment. J Tissue Viability 25(4):193–200

    Article  Google Scholar 

  • Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Central Eur J Biol 2:1–33

    CAS  Google Scholar 

  • Gläser R, Harder J, Lange H, Bartels J, Christophers E et al (2005) Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol 6:57

    Article  PubMed  CAS  Google Scholar 

  • Gosain A, DiPietro LA (2004) Aging and wound healing. World J Surg 28:321–326

    Article  PubMed  Google Scholar 

  • Gottrup F, Apelqvist J, Bjarnsholt T, Cooper R, Moore Z et al (2014) Antimicrobials and non-healing wounds. Evidence, controversies and suggestions-key messages. J Wound Care 23:477–482

    Article  PubMed  Google Scholar 

  • Halstead FD, Rauf M, Bamford A, Wearn CM, Bishop JR et al (2015) Antimicrobial dressings: comparison of the ability of a panel of dressings to prevent biofilm formation by key burn wound pathogens. Burns 41:1683–1694

    Article  PubMed  Google Scholar 

  • Hannigan GD, Pulos N, Grice EA et al (2015) Adv Wound Care (New Rochelle) 4:59–74

    Article  Google Scholar 

  • Howell-Jones RS, Wilson MJ, Hill KE et al (2005) A review of the microbiology, antibiotic usage and resistance in chronic skin wounds. J Antimicrob Chemother 55:143–149

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1:143–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang HN, Pan CY, Rajanbabu V, Chan YL, Wu CJ, Chen JY (2011) Modulation of immune responses by the antimicrobial peptide, epinecidin (Epi)-1, and establishment of an Epi-1-based inactivated vaccine. Biomaterials 32:3627–3636. https://doi.org/10.1016/j.biomaterials.2011.01.061

    Article  CAS  PubMed  Google Scholar 

  • Imane MM, Houda F, Amal AHS, Kaotar N, Mohammed T, Imane R, Farid H (2017) Phytochemical composition and antibacterial activity of Moroccan Lavandula angustifolia mill. J Essent Oil Bear Plants 20:1074–1082

    Article  Google Scholar 

  • Israili ZH (2014) Antimicrobial properties of honey. Am J Ther 21:304–423

    Article  PubMed  Google Scholar 

  • Jantakee K, Tragoolpua Y (2015) Activities of different types of Thai honey on pathogenic bacteria causing skin diseases, tyrosinase enzyme and generating free radicals. Biol Res 48:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalia C, Wood TK, Kumar P (2014) Evolution of resistance to quorum sensing inhibitors. Microbiol Ecol 68(1):13–23

    Article  CAS  Google Scholar 

  • Kandi V, Kandi S (2015) Antimicrobial properties of nanomolecules: potential candidates as antibiotics in the era of multi-drug resistance. Epidemiol Health 37:e2015020

    Article  PubMed  PubMed Central  Google Scholar 

  • Kavoosi G, Dadfar SMM, Purfard AM, Mehrabi R (2013) Antioxidant and antibacterial properties of gelatin films incorporated with Carvacrol. J Food Saf 33:423–432

    Article  Google Scholar 

  • Khampieng T, Wnek GE, Supaphol P (2014) Electrospun DOXY-h loaded-poly(acrylic acid) nanofiber mats: in vitro drug release and antibacterial properties investigation. J Biomater Sci-Polym Ed 25:1292–1305

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Jang JE, Kim J, In Lee Y, Lee DW, Song SY, Lee JH (2017) Enhanced barrier functions and anti-inflammatory effect of cultured coconut extract on human skin. Food Chem Toxicol 106(Part A):367–375

    Article  CAS  PubMed  Google Scholar 

  • Kish TD, Chang MH, Fung HB (2010) Treatment of skin and soft tissue infections in the elderly: a review. Am J Geriatr Pharmacother 8:485–513

    Article  PubMed  Google Scholar 

  • Kohanski MA, Dwyer DJ, Collins JJ (2010) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8:423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Patel SKS, Lee JK, Kalia CV (2013) Extending the limits of Bacillus for novel biotechnological application. Biotechnol Adv 31(8):1543–1561

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Curtis A, Hoskins C (2018) Application of nanoparticle Technologies in the Combat against anti-microbial resistance. Pharmaceutics 10:11

    Article  PubMed Central  CAS  Google Scholar 

  • Kumar P, Lee JH, Beyenal H, Lee J (2020) Fatty acids as Antibiofilm and Antivirulence agents. Trends Microbiol 28(9):753–768

    Article  CAS  PubMed  Google Scholar 

  • Kuś PM, Szweda P, Jerković I, Tuberoso CI (2016) Activity of Polish unifloral honeys against pathogenic bacteria and its correlation with colour, phenolic content, antioxidant capacity and other parameters. Lett Appl Microbiol 62:269–276

    Article  PubMed  CAS  Google Scholar 

  • Kwakman PH, te Velde AA, de Boer L, Speijer D, Vandenbroucke-Grauls CM, Zaat SA (2010) How honey kills bacteria. FASEB J 24:2576–2582

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Gallo RL (2009) AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauren AH, Jennifer NO, Raja KS (2016) Cedar wood oil as complementary treatment in refractory acne. J Alternat Complement Med 22(3):252–253. https://doi.org/10.1089/acm.2015.0208

    Article  Google Scholar 

  • Li H, Williams GR, Wang JWH, Sun X, Zhu LM (2017) Poly(N-isopropyl acrylamide)/poly(l-lactic acid-co-ɛ-caprolactone) fibers loaded with ciprofloxacin as wound dressing materials. Mater Sci Eng C Mater Biol Appl 79:245–254. https://doi.org/10.1016/j.msec.2017.04.058

    Article  CAS  PubMed  Google Scholar 

  • Liakos I, Rizzello L, Scurr DJ, Pompa PP, Bayer IS, Athanassiou A (2014) All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. Int J Pharm 463:137–145

    Article  CAS  PubMed  Google Scholar 

  • Liakos I, Rizzello L, Hajiali H, Brunetti V, Carzino R, Pompa P, Athanassiou A, Mele E (2015) Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. J Mater Chem B 3:1583–1589

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Nielsen LH, Kłodzińska SN, Nielsen HM, Quc H, Christensen LP, Rantanen J, Yangad M (2018) Ciprofloxacin-loaded sodium alginate/poly(lactic-co-glycolic acid) electrospun fibrous mats for wound healing. Eur J Pharm Biopharm 123:42–49. https://doi.org/10.1016/j.ejpb.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Brauer MJ, Botstein D (2009) Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast. Mol Biol Cell 20:891–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Turnbull L, Burke CM, Liu M, Carter DA, Schlothauer RC, Whitchurch CB, Harry EJ (2014) Manuka-type honeys can eradicate biofilms produced by Staphylococcus aureus strains with different biofilm-forming abilities. PeerJ 2:e326

    Article  PubMed  PubMed Central  Google Scholar 

  • Mah TF, Pitts B, Pellock B et al (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310

    Article  CAS  PubMed  Google Scholar 

  • Malmsten M, Davoudi M, Walse B, Rydengard V, Pasupuleti M et al (2007) Antimicrobial peptides derived from growth factors. Growth Factors 25:60–70

    Article  CAS  PubMed  Google Scholar 

  • Mancl KA, Kirsner RS, Ajdic D (2013) Wound biofilms: lessons learned from oral biofilms. Wound Repair Regen 21:352–362

    Article  PubMed  PubMed Central  Google Scholar 

  • Marino M, Bersani C, Comi G (2001) Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. Microbiol 67(3):187–195

    CAS  Google Scholar 

  • Martin E, Ganz T, Lehrer RI (1995) Defensins and other endogenous peptide antibiotics of vertebrates. J Leukoc Biol 58:128–136

    Article  CAS  PubMed  Google Scholar 

  • Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, Lerox MA (2012) Concise Review: Role of mesenchymal stem cells in wound repair. Stem Cells Transl 1(2):142–149. (Medline)

    Article  CAS  Google Scholar 

  • Michalska-Sionkowska M, Kaczmarek B, Walczak M, Sionkowska A (2018) Antimicrobial activity of new materials based on the blends of collagen/chitosan/hyaluronic acid with gentamicin sulfate addition. Mater Sci Eng C Mater Biol Appl 86:103–108

    Article  CAS  PubMed  Google Scholar 

  • Midwood KS, Williams LV, Schwarzbauer JE (June 2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36(6):1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Molan PC (2006) The evidence supporting the use of honey as a wound dressing. Int J Lower Extrem Wounds 5:40–54

    Article  CAS  Google Scholar 

  • Mori H, Kawanami H, Kawahata H, Aoki M (2016) Wound healing potential of lavender oil by acceleration of granulation and wound contraction through induction of TGF-β in a rat model. BMC Complement Altern Med 16:144

    Google Scholar 

  • Nesrine R, Yassine M, Salma D, Hedia C, Marwa J, Xavier F, Abdennacer B (2013) Variation of the chemical composition and antimicrobial activity of the essential oils of natural populations of Tunisian Daucus carota L. (Apiaceae). Chem Divers 10(12):2278–2290

    Google Scholar 

  • Nevin KG, Rajamohan T (2010) Effect of topical application of virgin coconut oil on skin components and antioxidant status during dermal wound healing in young rats. Skin Pharmacol Physiol 23:290–297

    Article  CAS  PubMed  Google Scholar 

  • Ng WJ, Lim MS (2015) Anti-staphylococcal activity of melaleuca honey. Southeast Asian J Trop Med Public Health 46:472–479

    PubMed  Google Scholar 

  • Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K et al (2007) Antimicrobial peptides human β-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Investig Dermatol 127:594–604

    Article  CAS  PubMed  Google Scholar 

  • Nogueira MNM, Aquino SG, Rossa Junior C, Spolidorio DMP (2014) Terpinen-4-ol and alpha-terpineol (tea tree oil components) inhibit the production of IL-1b, IL-6 and IL-10 on human macrophages. Inflamm Res 63:769–778

    Article  CAS  PubMed  Google Scholar 

  • Nurjadi D, Herrmann E, Hinderberger I, Zanger P (2012) Impaired β-defensin expression in human skin links DEFB1 promoter polymorphisms with persistent Staphylococcus aureus nasal carriage. J Infect Dis 207:666–674

    Article  PubMed  CAS  Google Scholar 

  • Ovington L (2003) Ostomy Wound Manage 49:8–12

    PubMed  Google Scholar 

  • Packer JM, Irish J, Herbert BR, Hill C, Padula M, Blair SE, Carter DA, Harry EJ (2012) Specific non-peroxide antibacterial effect of manuka honey on the Staphylococcus aureus proteome. Int J Antimicrob Agents 40:43–50

    Article  CAS  PubMed  Google Scholar 

  • Pamfil D, Vasile C, Tarţău L, Vereştiuc L, Poiată A (2017) pH-responsive 2-hydroxyethyl methacrylate/citraconic anhydride–modified collagen hydrogels as ciprofloxacin carriers for wound dressings. J Bioact Compat Polym 32:355–381. https://doi.org/10.1177/0883911516684653

    Article  CAS  Google Scholar 

  • Pariya K, Hamed S, Jinous A (2015) Analgesic and anti-inflammatory activities of Citrus aurantium L. blossoms essential oil (neroli): involvement of the nitric oxide/cyclic-guanosine monophosphate pathway. J Nat Med 69:324–331

    Article  CAS  Google Scholar 

  • Pasupuleti M, Walse B, Nordahl EA, Morgelin M, Malmsten M et al (2007) Preservation of antimicrobial properties of complement peptide C3a, from invertebrates to humans. J Biol Chem 282:2520–2528

    Article  CAS  PubMed  Google Scholar 

  • Pîrvănescu H, Bălăşoiu M, Ciurea ME, Bălăşoiu AT, Mănescu R (2014) Wound infections with multi-drug resistant bacteria. Chirurgia 109:73–79

    PubMed  Google Scholar 

  • Popoola OK, Marnewick JL, Rautenbach F, Ameer F, Iwuoha EI, Hussein AA (2015) Inhibition of oxidative stress and skin aging-related enzymes by Prenylated Chalcones and other flavonoids from Helichrysum teretifolium. Molecules 20(4):7143–7155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pramanik A, Laha D, Bhattacharya D, Pramanik P, Karmakar P (2012) A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf B Biointerfaces 96:50–55

    Article  CAS  PubMed  Google Scholar 

  • Rădulescu M, Holban AM, Mogoantă L, Bălşeanu TA, Mogoşanu GD, Savu D, Popescu RC, Fufă O, Grumezescu AM, Bezirtzoglou E et al (2016) Fabrication, characterization, and evaluation of bionanocomposites based on natural polymers and antibiotics for wound healing applications. Molecules 21:761

    Article  PubMed Central  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Kon K, Gade A, Ingle A, Nagaonkar D, Paralikar P, da Silva SS (2016) Chapter 6—antibiotic resistance: can nanoparticles tackle the problem? In: Antibiotic resistance. Mechanisms and new antimicrobial approaches. Elsevier Science, New York, NY, pp 121–143

    Google Scholar 

  • Rajanbabu V, Chen JY (2011) The antimicrobial peptide, tilapia hepcidin 2-3, and PMA differentially regulate the protein kinase C isoforms, TNF-α and COX-2, in mouse RAW264.7 macrophages. Peptides 32:333–341. https://doi.org/10.1016/j.peptides.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  • Rajpaul K (2015) Biofilm in wound care. Br J Community Nurs 20:S6

    Article  Google Scholar 

  • Rodríguez-Martínez S, Cancino-Diaz JC, Vargas-Zuñiga LM, Cancino-Diaz ME (2008) LL-37 regulates the overexpression of vascular endothelial growth factor (VEGF) and c-IAP-2 in human keratinocytes. Int J Dermatol 47:457–462. https://doi.org/10.1111/j.1365-4632.2008.03340.x

  • Röhrl J, Yang D, Oppenheim JJ, Hehlgans T (2010) Human β-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J Immunol 184:6688–6694

    Article  PubMed  CAS  Google Scholar 

  • Roupé KM, Nybo M, Sjöbring U, Alberius P, Schmidtchen A et al (2010) Injury is a major inducer of epidermal innate immune responses during wound healing. J Investig Dermatol 130:1167–1177

    Article  PubMed  CAS  Google Scholar 

  • Saikaly SK, Khachemoune A (2017) Honey and wound healing: an update. Am J Clin Dermatol 18:237–251

    Article  PubMed  Google Scholar 

  • Scagnelli AM (2016) Therapeutic review: Manuka honey. J Exot Pet Med 25:168–171

    Article  Google Scholar 

  • Semeniuc CA, Popa CR, Rotar AM (2017) Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. J Food Drug Anal 25:403–408

    Article  CAS  PubMed  Google Scholar 

  • Seow YX, Yeo CR, Chung HL, Yuk H-G (2014) Plantessentialoilsasactiveantimicrobialagents. Crit Rev Food Sci Nutr 54:625–644

    Article  CAS  PubMed  Google Scholar 

  • Sherlock O, Dolan A, Athman R, Power A, Gethin G, Cowman S, Humphreys H (2010) Comparison of the antimicrobial activity of Ulmo honey from Chile and Manuka honey against methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. BMC Complement Altern Med 10:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinde UA, Phadke AS, Nair AM, Mungantiwar AA, Dikshit VJ, Saraf MN (1999) Studies on the anti-inflammatory and analgesic activity of Cedrus deodara (Roxb.). loud. Wood Oil J Et Hnopharmacol 65(1):21–27

    CAS  Google Scholar 

  • Shrestha G, Raphael J, Leavitt SD, St Clair LL (2014) In vitro evaluation of the antibacterial activity of extracts from 34 species of North American lichens. Pharm Biol 52:1262–1266

    Article  PubMed  Google Scholar 

  • Sienkiewicz M, Głowacka A, Kowalczyk E, Wiktorowska-Owczarek A, Jóźwiak-Bębenista M, Łysakowska M (2014) The biological activities of cinnamon, Geranium and lavender essential oils. Molecules 19:20929–20940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simões D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ (2018) Recent advances on antimicrobial wound dressing: a review. Eur J Pharm Biopharm 127:130–141

    Article  PubMed  CAS  Google Scholar 

  • Simon A, Traynor K, Santos K, Blaser G, Bode U, Molan P (2009) Medical honey for wound care—still the ‘latest resort’? Evid-Based Complement Altern Med 6:165–173

    Article  Google Scholar 

  • Sørensen OE (2016) Antimicrobial peptides in cutaneous wound healing. In: Antimicrobial peptides. Springer, Cham, pp 1–15

    Google Scholar 

  • Steinbakk M, Naess-Andresen C, Fagerhol M, Lingaas E, Dale I et al (1990) Antimicrobial actions of calcium binding leucocyte L1 protein, calprotectin. Lancet 336:763–765

    Article  CAS  PubMed  Google Scholar 

  • Taylor PK, Yeung AT, Hancock RE (2014) Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. J Biotechnol 191:121–130

    Article  CAS  PubMed  Google Scholar 

  • Tokumaru S, Higashiyama S, Endo T, Nakagawa T, Miyagawa JI et al (2000) Ectodomain shedding of epidermal growth factor receptor ligands is required for keratinocyte migration in cutaneous wound healing. J Cell Biol 151:209–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valerón-Almazán P, Gómez-Duaso AJ, Santana-Molina N, García-Bello MA, Carretero G (2015) Evolution of post-surgical scars treated with pure rosehip seed oil. J Cosmet Dermatol Sci Appl 5:161–167

    Google Scholar 

  • Varma SR, Sivaprakasam TO, Ilavarasu A, Dilip N, Raghuraman M, Pavan KB, Rafiq M, Paramesh R (2019) In vitro anti-inflammatory and skin protective properties of virgin coconut oil. J Tradit Complement Med 9(1):5–14

    Article  PubMed  Google Scholar 

  • Volkan T, Jurek C, Masoud M, René van der H, Berend van der L (2016) The role of topical. Vitamin E in scar management: a systematic review. Aesthet Surg J 36(8):959–965

    Article  Google Scholar 

  • Walsh SE, Maillard J-Y, Russell AD, Catrenich CE, Charbonneau DL, Bartolo RG (2003) Development of bacterial resistance to several biocides and effects on antibiotic susceptibility. J Hosp Infect 55:98–107

    Article  CAS  PubMed  Google Scholar 

  • White RJ, Cutting K, Kingsley A (2006) Topical of wound bioburden. Ostomy Wound Manage 52:26–58

    PubMed  Google Scholar 

  • Wilson MA (2003) Skin and soft-tissue infections: impact of resistant gram-positive bacteria. Am J Surg 186:35S–41S

    Article  PubMed  Google Scholar 

  • Wolcott RD, Rhoads DD, Bennett ME et al (2010) Chronic wounds and the medical biofilm paradigm. J Wound Care 19:45–46

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Fan L, Ma L, Wang Y, Lin S, Yu F, Pan X, Luo G, Zhang D, Wang H (2017a) Green electrospun Manuka honey/silk fibroin fibrous matrices as potential wound dressing. Mater Des 119:76–84

    Article  CAS  Google Scholar 

  • Yang Y, Qin Z, Zeng W, Yang T, Cao Y, Mei C, Kuang Y (2017b) Toxicity assessment of nanoparticles in various systems and organs. Nanotechnol Rev 6:279–289

    Article  CAS  Google Scholar 

  • Ye S, Jiang L, Wu J, Su C, Huang C, Liu X, Shao W (2018) Flexible amoxicillin-grafted bacterial cellulose sponges for wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 10:5862–5870. https://doi.org/10.1021/acsami.7b16680

    Article  CAS  PubMed  Google Scholar 

  • Zanger P, Holzer J, Schleucher R, Scherbaum H, Schittek B et al (2010) Severity of Staphylococcus aureus infection of the skin is associated with inducibility of human β-defensin 3 but not human β-defensin 2. Infect Immun 78:3112–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  • Zenati F, Benbelaid F, Khadir A, Bellahsene C, Bendahou M (2014) Antimicrobial effects of three essential oils on multidrug resistant bacteria responsible for urinary infections. J Appl Pharm Sci 4:15–18

    Google Scholar 

  • Zewde B, Ambaye A, Stubbs J III, Raghavan D (2016) A review of stabilized silver nanoparticles—synthesis, biological properties, characterization, and potential areas of applications. JSM Nanotechnol Nanomed 4:1043

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rout, R. (2021). Development of Novel Anti-infective Formulations for Wound Disinfection. In: Kumar, P., Kothari, V. (eds) Wound Healing Research. Springer, Singapore. https://doi.org/10.1007/978-981-16-2677-7_11

Download citation

Publish with us

Policies and ethics