Skip to main content

Review of Biomass Energy Resources with Livestock Manure

  • Chapter
  • First Online:
Advances in Energy and Combustion

Part of the book series: Green Energy and Technology ((GREEN))

  • 1254 Accesses

Abstract

This paper presents different thermochemical conversion processes on different biomass species. The results show it is recommended to use the lowest heating rate to allow a quasi-equilibrium state through slow heating, hence avoiding measurement errors. Thermal degradation of the three main components of the chicken manure was obtained. The initial results show that for the slow heating rates, 5 °C/min, the thermal degradation of the cow manure is different compared to that one obtained from chicken manure. The Hemicellulose decomposition took place at 250 and 300 °C for the chicken manure and cow manure, respectively. The Cellulose decomposition was started at 300 °C for chicken manure and 470 °C for cow manure. Rice husk, the peak of the Pyrolysis of rice husk, is less distributed than the Pyrolysis of chicken manure due to the absence of Hemicellulose and less Lignin content. For CO2 gasification, the chemical reactions, for all different heating rates tested, were endothermic. Consequently, the energy must be supplied in terms of heating to sustain the reaction, while air gasification was exothermic, which means that the reaction can be sustained without external heating where the self-ignition was observed between 450 and 600 ℃. In addition, it was observed that carbon dioxide had the most complicated mechanism with four stages. CO-Pyrolysis, results show the 40% RH-60%CH decreasing the activation energy by 12% compared to Chicken manure. In addition, an increase in the mass conversion by more than 3% was achieved. The 40% CM-60% CH shows a positive result in terms of keeping an exothermic reaction over the co-Pyrolysis process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Outlook AE (2020). Energy information administration. Department of Energy, Washington, DC 20585, pp 1–161

    Google Scholar 

  2. Lv Y, Bi J, Yan J (2018) State-of-the-art in low carbon community. Int J Energy Clean Environ 19(3–4)

    Google Scholar 

  3. Ryu HW, Kim DH, Jae J, Lam SS, Park ED, Park Y-K (2020) Recent advances in catalytic co-Pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons. Bioresource Technol 123473

    Google Scholar 

  4. Ong HC, Chen W-H, Farooq A, Gan YY, Lee KT, Ashokkumar V (2019) Catalytic thermochemical conversion of biomass for biofuel production: a comprehensive review. Renew Sustain Energy Rev 113:109266

    Google Scholar 

  5. Pandey A (ed) (2011) Biofuels: alternative feedstocks and conversion processes. Academic Press

    Google Scholar 

  6. Chen H, Wang L (2016) Technologies for biochemical conversion of biomass. Academic Press

    Google Scholar 

  7. Pandey A, Bhaskar T, Stöcker M, Sukumaran R (eds) Recent advances in thermochemical conversion of biomass. Elsevier

    Google Scholar 

  8. Rosendahl L (ed) In: Biomass combustion science, technology and engineering. Elsevier

    Google Scholar 

  9. Verma M, Godbout S, Brar SK, Solomatnikova O, Lemay SP, Larouche JP (2012) Biofuels production from biomass by thermochemical conversion technologies. Int J Chem Eng

    Google Scholar 

  10. Molino A, Chianese S, Musmarra D (2016) Biomass gasification technology: the state-of-the-art overview. J Energy Chem 25(1):10–25

    Article  Google Scholar 

  11. Neves D, Thunman H, Matos A, Tarelho L, Gómez-Barea A (2011) Characterization and prediction of biomass Pyrolysis products. Prog Energy Combust Sci 37(5):611–630

    Article  Google Scholar 

  12. Guedes RE, Luna AS, Torres AR (2018) Operating parameters for bio-oil production in biomass Pyrolysis: a review. J. Anal Appl Pyrolysis 129:134–149

    Google Scholar 

  13. Pandey A (2008) Handbook of plant-based biofuels. CRC Press

    Google Scholar 

  14. Heidari A, Eshagh K, Habibollah Y, Lu HR (2019) Evaluation of fast and slow Pyrolysis methods for bio-oil and activated carbon production from eucalyptus wastes using a life cycle assessment approach. J Cleaner Prod 241:118394

    Google Scholar 

  15. Hussein MH (2016) Experimental investigation of chicken manure pyrolysis and gasification. Ph.D. Thesis, University of Wisconsin-Milwaukee

    Google Scholar 

  16. Vieira FR, Romero Luna CM, Arce GLAF, Ávila I (2020) Optimization of slow Pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk. Biomass Bioenergy 132:105412

    Google Scholar 

  17. Yuan T, He W, Yin G, Shiai Xu (2020) Comparison of bio-chars formation derived from fast and slow Pyrolysis of walnut shell. Fuel 261:116450

    Article  Google Scholar 

  18. Al Arni S (2018) Comparison of slow and fast Pyrolysis for converting biomass into fuel. Renew Energy 124:197–201

    Google Scholar 

  19. Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12(2:504–517

    Google Scholar 

  20. Tanoue K-I, Hinauchi T, Oo T, Nishimura T, Taniguchi M, Sasauchi K-I (2007) Modeling of heterogeneous chemical reactions caused in Pyrolysis of biomass particles. Adv Powder Technol 18(6):825–840

    Article  Google Scholar 

  21. Dry ME (1996) Practical and theoretical aspects of the catalytic Fischer-Tropsch process. Appl Catal A 138(2):319–344

    Article  Google Scholar 

  22. Reed TB (2002) Encyclopedia of biomass thermal conversion: the principles and technology of Pyrolysis, gasification and combustion. Biomass Energy Foundation Press

    Google Scholar 

  23. Gebreegziabher T, Oyedun AO, Hui CW (2013) Optimum biomass drying for combustion–a modeling approach. Energy 53:67–73

    Google Scholar 

  24. Han J, Choi Y, Kim J (2020) Development of the process model and optimal drying conditions of biomass power plants. ACS Omega 5(6):2811–2818

    Article  Google Scholar 

  25. Gaur S, Reed TB (1995) An atlas of thermal data for biomass and other fuels. No. NREL/TP-433–7965. National Renewable Energy Lab., Golden, CO (United States)

    Google Scholar 

  26. Balat M (2008) Mechanisms of thermochemical biomass conversion processes. Part 1: Reactions of Pyrolysis Energy Sources Part A: Recovery Utilization Environ Effects 30(7):620–635

    Google Scholar 

  27. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin Pyrolysis. Fuel 86(12–13):1781–1788

    Google Scholar 

  28. Uddin MN, Daud WMAW, Abbas HF (2014) Effects of pyrolysis parameters on hydrogen formations from biomass: a review. RSC Adv 4(21):10467. https://doi.org/10.1039/c3ra43972k

  29. Kumar A, Jones DD, Hanna MA (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2:556–581. https://doi.org/10.3390/en20300556

    Article  Google Scholar 

  30. Bahng M-K, Mukarakate C, Robichaud DJ, Nimlos MR (2009) Current technologies for analysis of biomass thermochemical processing: a review. Anal Chim Acta 651:117–138. https://doi.org/10.1016/j.aca.2009.08.016

    Article  Google Scholar 

  31. Kalinci Y, Hepbasli A, Dincer I (2009) Biomass-based hydrogen production: a review and analysis. Int J Hydrogen Energy 34:8799–8817. https://doi.org/10.1016/j.ijhydene.2009.08.078

    Article  Google Scholar 

  32. Woolcock PJ, Brown RC (2013) A review of cleaning technologies for biomass-derived Syngas. Biomass Bioenergy 52:54–84. https://doi.org/10.1016/j.biombioe.2013.02.036

    Article  Google Scholar 

  33. Sutton D, Kelleher B, Ross JRH (2001) Review of literature on catalysts for biomass gasification. Fuel Process Technol 73:155–173. https://doi.org/10.1016/S0378-3820(01)00208-9

    Article  Google Scholar 

  34. Bulushev DA, Ross JRH (2011) Catalysis for conversion of biomass to fuels via Pyrolysis and gasification: a review. Catal Today 171:1–13. https://doi.org/10.1016/j.cattod.2011.02.005

    Article  Google Scholar 

  35. Tanksale A, Beltramini JN, Lu GM (2010) A review of catalytic hydrogen production processes from biomass. Renew Sustain Energy Rev 14:166–182. https://doi.org/10.1016/j.rser.2009.08.010

    Article  Google Scholar 

  36. Saxena RC, Seal D, Kumar S, Goyal HB (2008) Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renew Sustain Energy Rev 12:1909–1927. https://doi.org/10.1016/j.rser.2007.03.005

    Article  Google Scholar 

  37. Puig-Arnavat M, Bruno JC, Coronas A (2010) Review and analysis of biomass gasification models. Renew Sustain Energy Rev 14:2841–2851. https://doi.org/10.1016/j.rser.2010.07.030

    Article  Google Scholar 

  38. Chhiti Y, Kemiha M (2013) Thermal conversion of biomass pyrolysis and gasification: a review. Int J Eng Silences 2:75–85

    Google Scholar 

  39. Pereira EG, da Silva JN, de Oliveira JL, Machado CS (2012) Sustainable energy: a review of gasification technologies. Renew Sustain Energy Rev 16:4753–4762. https://doi.org/10.1016/j.rser.2012.04.023

    Article  Google Scholar 

  40. Parthasarathy P, Narayanan KS (2014) Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield—a review. Renew Energy 66:570–579. https://doi.org/10.1016/j.renene.2013.12.025

    Article  Google Scholar 

  41. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889. https://doi.org/10.1021/ef0502397

    Article  Google Scholar 

  42. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46. https://doi.org/10.1016/S0960-8524(01)001183

    Article  Google Scholar 

  43. Wang L, Weller CL, Jones DD, Hanna MA (2008) Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass Bioenergy 32:573–581. https://doi.org/10.1016/j.biombioe.2007.12.007

    Article  Google Scholar 

  44. Kamin´ ska-Pietrzak N, Smolin´ ski A (2013) Selected environmental aspects of gasification and co-gasification of various types of waste. J Sustain Min 12:6–13.https://doi.org/10.7424/jsm130402

  45. Higman C, van der Burgt M, Higman C, van der Burgt M (2008) Chapter 1—introduction. Gasification 1–9. https://doi.org/10.1016/B978-07506-8528-3.00001

  46. Kim S-S, Agblevor FA (2007) Pyrolysis characteristics and kinetics of chicken litter. Waste Manage 27:135–140. https://doi.org/10.1016/j.wasman.2006.01.012

    Article  Google Scholar 

  47. Dejong W, Dinola G, Venneker B, Spliethoff H, Wojtowicz M (2007) TG-FTIR Pyrolysis of coal and secondary biomass fuels: determination of Pyrolysis kinetic parameters for main species and NOx precursors. Fuel 86:2367–2376. https://doi.org/10.1016/j.fuel.2007.01.032

    Article  Google Scholar 

  48. Kim S-S, Agblevor FA, Lim J (2009) Fast Pyrolysis of chicken litter and turkey litter in a fluidized bed reactor. J Ind Eng Chem 15:247–252. https://doi.org/10.1016/j.jiec.2008.10.004

    Article  Google Scholar 

  49. Agblevor FA, Beis S, Kim SS, Tarrant R, Mante NO (2010) Biocrude oils from the fast Pyrolysis of poultry litter and hardwood. Waste Manage 30:298–307. https://doi.org/10.1016/j.wasman.2009.09.042

    Article  Google Scholar 

  50. Joseph P, Tretsiakova-McNally S, McKenna S (2012) Characterization of cellulosic wastes and gasification products from chicken farms. Waste Manage 32:701–709. https://doi.org/10.1016/j.wasman.2011.09.024

    Article  Google Scholar 

  51. Font-Palma C (2012) Characterisation, kinetics and modelling of gasification of poultry manure and litter: an overview. Energy Convers Manage 53:92–98. https://doi.org/10.1016/j.enconman.2011.08.017

    Article  Google Scholar 

  52. Priyadarsan S, Annamalai K, Sweeten JM, Holtzapple MT, Mukhtar S (2005) Co-gasification of blended coal with feedlot and chicken litter biomass. Proc Combust Inst 30:2973–2980. https://doi.org/10.1016/j.proci.2004.08.137

    Article  Google Scholar 

  53. Kirubakaran V, Sivaramakrishnan V, Premalatha M, Subramanian P (2007) Kinetics of auto-gasification of poultry litter. Int J Green Energy 4:519–534. https://doi.org/10.1080/15435070701583102

    Article  Google Scholar 

  54. Xiao X, Le DD, Li L, Meng X, Cao J, Morishita K et al (2010) Catalytic steam gasification of biomass in fluidized bed at low temperature: conversion from livestock manure compost to hydrogen-rich Syngas. Biomass Bioenergy 34:1505–1512. https://doi.org/10.1016/j.biombioe.2010.05.001

    Article  Google Scholar 

  55. Yanagida T, Minowa T, Nakamura A, Matsumura Y, Noda Y (2008) Behavior of inorganic elements in poultry manure during supercritical water gasification. Nihon Enerugi Gakkaishi/J Jpn Inst Energy. https://doi.org/10.3775/jie.87.731

    Article  Google Scholar 

  56. Yanagida T, Minowa T, Shimizu Y, Matsumura Y, Noda Y (2009) Recovery of activated carbon catalyst calcium nitrogen and phosphate from effluent following supercritical water gasification of poultry manure. Bioresour Technol 100:4884–4886. https://doi.org/10.1016/j.biortech.2009.05.042

    Article  Google Scholar 

  57. Pinto F, André R, Miranda M, Neves D, Varela F, Santos J (2016) Effect of gasification agent on co-gasification of rice production wastes mixtures. Fuel 180:407–416. https://doi.org/10.1016/j.fuel.2016.04.048

    Article  Google Scholar 

  58. Mahinpey N, Gomez A (2016) Review of gasification fundamentals and new findings: reactors, feedstock, and kinetic studies. Chem Eng Sci 148:14–31. https://doi.org/10.1016/j.ces.2016.03.037

    Article  Google Scholar 

  59. Karatas H, Olgun H, Akgun F (2012) Experimental results of gasification of waste tire with air and CO2 air and steam and steam in a bubbling fluidized bed gasifier. Fuel Process Technol 102:166–174. https://doi.org/10.1016/j.fuproc.2012.04.013

    Article  Google Scholar 

  60. Sharma S, Sheth PN (2016) Air–steam biomass gasification: experiments, modeling and simulation. Energy Convers Manage 110:307–318. https://doi.org/10.1016/j.enconman.2015.12.030

  61. Broer KM, Woolcock PJ, Johnston PA, Brown RC (2015) Steam/oxygen gasification system for the production of clean syngas from switchgrass. Fuel 140:282–292. https://doi.org/10.1016/j.fuel.2014.09.078

    Article  Google Scholar 

  62. Arabloo M, Bahadori A, Ghiasi MM, Lee M, Abbas A, Zendehboudi S (2015) A novel modeling approach to optimize oxygen–steam ratios in coal gasification process. Fuel 153:1–5. https://doi.org/10.1016/j.fuel.2015.02.083

    Article  Google Scholar 

  63. Yuan H, Lu T, Zhao D, Wang Y, Kobayashi N (2015) Influence of oxygen concentration and equivalence ratio on MSW oxygen-enriched gasification syngas compositions. In: Progress in clean energy, vol 2. Springer, Cham, pp 165–176

    Google Scholar 

  64. Guo X, Wang S, Wang K, Qian LIU, Luo Z (2010) Influence of extractives on mechanism of biomass Pyrolysis. J Fuel Chem Technol 38(1):42–46

    Google Scholar 

  65. Mallick D, Poddar MK, Mahanta P, Vijayan, Moholkar S (2018) Discernment of synergism in Pyrolysis of biomass blends using thermogravimetric analysis. Bioresource Technol 261:294–305

    Google Scholar 

  66. Collot A-G, Zhuo Y, Dugwell DR, Kandiyoti R (1999) Co-Pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidised bed reactors. Fuel 78(6):667–679

    Google Scholar 

  67. Fan Y, Li Y, Zhiqiang Wu, Sun Z, Yang B (2018) Kinetic analysis on gaseous products during Co-Pyrolysis of low-rank coal with lignocellulosic biomass model compound: effect of Lignin. Energy Procedia 152:916–921

    Article  Google Scholar 

  68. He Q, Qinghua Guo Lu, Ding JW, Guangsuo Yu (2019) Rapid Co-Pyrolysis of lignite and biomass blends: analysis of synergy and gasification reactivity of residue char. J Anal Appl Pyrol 143:104688

    Article  Google Scholar 

  69. Burra KG, Gupta AK (2018) Kinetics of synergistic effects in Co-Pyrolysis of biomass with plastic wastes. Appl Energy 220:408–418

    Article  Google Scholar 

  70. Hossain MS, Islam MR, Rahman MS, Kader MA, Haniu H (2017) Biofuel from Co-Pyrolysis of solid tire waste and rice husk. In Energy Procedia, vol 110, pp 453–458. Elsevier Ltd. https://doi.org/10.1016/j.egypro.2017.03.168

  71. Costa P, Pinto F, Miranda M, André R, Rodrigues M (2014) Study of the experimental conditions of the co-Pyrolysis of rice husk and plastic wastes

    Google Scholar 

  72. Ng WC, You S, Ling R, Gin KY-H, Dai Y, Wang C-H (2017) Co-gasification of woody biomass and chicken manure: syngas production biochar reutilization, and cost-benefit analysis. Energy 139:732–742

    Google Scholar 

  73. Dayananda BS, Manjunath SH, Girish KB, Sreepathi LK (2013) An experimental approach on gasification of the chicken litter with rice husk. Int J Innov Res Sci Eng Technol 2(7):2837–2842

    Google Scholar 

  74. Seçer A, Küçet N, Fakı E, Hasanoğlu A (2018) Comparison of co–gasification efficiencies of coal lignocellulosic biomass and biomass hydrolysate for high yield hydrogen production. Int J Hydrogen Energy 43(46):21269–21278

    Google Scholar 

  75. White JE, Catallo WJ, Legendre BJ (2011) Biomass Pyrolysis kinetics: a comparative critical review with relevant. J Anal Appl Pyrolysis

    Google Scholar 

  76. Phyllis2 (2015) database for biomass and waste [Online]. Available at https://www.ecn.nl/phyllis2/Biomass/View/3501

  77. Ruiz-Gómez N, Quispe V, Ábrego J, Atienza-Martínez M, Murillo MB, Gea G (2017) Co-Pyrolysis of sewage sludge and manure. Waste Manage 59:211. https://doi.org/10.1016/j.wasman.2016.11.013

    Article  Google Scholar 

  78. Selim OM, Hussein MS, Amano RS (2020) Effect of heating rate on chemical kinetics of chicken manure with different gas agents. J Energy Resourc Technol 142(10)

    Google Scholar 

  79. Yang H (2007) Characteristics of hemicellulose cellulose and lignin Pyrolysis. Fuel 1781–1788

    Google Scholar 

  80. Selim OM, Amano RS (2020) Co-pyrolysis of chicken and cow manure. ASME J Energy Resour Technol 143(1):011301. https://doi.org/10.1115/1.4047597

  81. Espindola J, Selim OM, Amano RS (2020) Co-pyrolysis of rice husk and chicken manure. ASME J Energy Resour Technol 143(2):022101. https://doi.org/10.1115/1.4047678

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoichi S. Amano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Selim, O.M., Espindola, J., Amano, R.S. (2022). Review of Biomass Energy Resources with Livestock Manure. In: Gupta, A.K., De, A., Aggarwal, S.K., Kushari, A., Runchal, A.K. (eds) Advances in Energy and Combustion. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-2648-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2648-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2647-0

  • Online ISBN: 978-981-16-2648-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics