Skip to main content

Direct Numerical Simulation of Preignition and Knock in Engine Conditions

  • Chapter
  • First Online:
Advances in Energy and Combustion

Part of the book series: Green Energy and Technology ((GREEN))

  • 1366 Accesses

Abstract

Theoretical framework and high-fidelity direct numerical simulations (DNS) on preignition and knock encountered in internal combustion (IC) engines are briefly reviewed in this chapter. The theoretical framework is presented first, and systematically followed by one-dimensional and multi-dimensional simulations. A number of high-fidelity simulations under realistic IC-engine conditions were used to demonstrate the super-knock mechanism in the presence of the complex chemistry-turbulence interaction. The ratio of ignition delay time to eddy-turnover time, \(\tau _\mathrm{ig}/\tau _t\), and the ratio of the most energetic length scale of turbulence and temperature fluctuations, \(l_t/l_T\), affect the knock intensities are discussed. Different statistical metrics extracted from the multi-dimensional simulations to predict knock intensity are also presented. The quantitative determination of strong and weak ignition modes using the predicted Sa-based metrics is also cover in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Luong MB, Hernández Pérez FE, Im HG (2020) Prediction of ignition modes of NTC-fuel/air mixtures with temperature and concentration fluctuations. Combust Flame 213:382–393

    Article  Google Scholar 

  2. Luong MB, Hernández Pérez FE, Sow A, Im HG (2019) Prediction of ignition regimes in DME/air mixtures with temperature and concentration fluctuations. AIAA SciTech 2019 Forum https://doi.org/10.2514/6.2019-2241

  3. Luong MB, Desai S, Hernández Pérez FE, Sankaran R, Johansson B, Im HG (2020) A statistical analysis of developing knock intensity in a mixture with temperature inhomogeneities. Proc Combust Inst 37

    Google Scholar 

  4. Luong MB, Desai S, Hernández Pérez FE, Sankaran R, Johansson B, Im HG (2006) Effects of turbulence and temperature fluctuations on knock development in an ethanol/air mixture. Flow Turbul Combust

    Google Scholar 

  5. Wang Z, Liu H, Reitz RD (2017) Knocking combustion in spark-ignition engines. Prog Energy Combust Sci 61:78–112

    Article  Google Scholar 

  6. Kalghatgi GT, Bradley D (2012) Pre-ignition and ‘super-knock’ in turbo-charged spark-ignition engines. Int J Engine Res 13:399–414

    Article  Google Scholar 

  7. Kalghatgi GT (2015) Developments in internal combustion engines and implications for combustion science and future transport fuels. Proc Combust Inst 35:101–115

    Article  Google Scholar 

  8. Figueroa-Labastida M, Badra J, Elbaz AM, Farooq A (2018) Shock tube studies of ethanol preignition. Combust. Flame 198:176–185

    Article  Google Scholar 

  9. Meyer JW, Oppenheim AK (1971) On the shock-induced ignition of explosive gases. Symp (Int) Combust 13:1153–1164

    Google Scholar 

  10. Lutz AE, Kee RJ, Miller JA, Dwyer HA, Oppenheim AK (1989) Dynamic effects of autoignition centers for hydrogen and c1, 2-hydrocarbon fuels. Symp (Int) Combust 22:1683–1693

    Google Scholar 

  11. Im HG, Pal P, Wooldridge MS, Mansfield AB (2015) A regime diagram for autoignition of homogeneous reactant mixtures with turbulent velocity and temperature fluctuations. Combust Sci Technol 187:1263–1275

    Article  Google Scholar 

  12. Towery CAZ, Poludnenko AY, Hamlington PE (2020) Detonation initiation by compressible turbulence thermodynamic fluctuations. Combust Flame 213:172–183

    Article  Google Scholar 

  13. Hernández Pérez FE, Mukhadiyev N, Xu X, Sow A, Lee BJ, Sankaran R, Im HG (2018) Direct numerical simulations of reacting flows with detailed chemistry using many-core/GPU acceleration. Comput Fluids 173:73–79

    Article  MathSciNet  MATH  Google Scholar 

  14. Desai S, Yu JK, Song W, Luong MB, Hernández Pérez FE, Sankaran R, Im HG (2020) Direct numerical simulations of reacting flows with shock waves and stiff chemistry using many-core/GPU acceleration. Comput Fluids, In revision

    Google Scholar 

  15. Sankaran R, Im HG, Hawkes ER, Chen JH (2005) The effects of non-uniform temperature distribution on the ignition of a lean homogeneous hydrogen-air mixture. Proc Combust Inst 30:875–882

    Article  Google Scholar 

  16. Chen JH, Hawkes ER, Sankaran R, Mason SD, Im HG (2006) Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: I. fundamental analysis and diagnostics. Combust Flame 145:128–144

    Article  Google Scholar 

  17. Hawkes ER, Sankaran R, Pébay P, Chen JH (2006) Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: II. parametric study. Combust Flame 145:145–159

    Article  Google Scholar 

  18. Bansal G, Im HG (2011) Autoignition and front propagation in low temperature combustion engine environments. Combust Flame 158:2105–2112

    Article  Google Scholar 

  19. Gupta S, Im HG, Valorani M (2011) Classification of ignition regimes in HCCI combustion using computational singular perturbation. Proc Combust Inst 33:2991–2999

    Article  Google Scholar 

  20. Yoo CS, Lu T, Chen JH, Law CK (2011) Direct numerical simulations of ignition of a lean \(n\)-heptane/air mixture with temperature inhomogeneities at constant volume: parametric study. Combust Flame 158:1727–1741

    Article  Google Scholar 

  21. Yu R, Bai X-S (2013) Direct numerical simulation of lean hydrogen/air auto-ignition in a constant volume enclosure. Combust Flame 160:1706–1716

    Article  Google Scholar 

  22. El-Asrag HA, Ju Y (2013) Direct numerical simulations of exhaust gas recirculation effect on multistage autoignition in the negative temperature combustion regime for stratified HCCI flow conditions by using H\(_2\)O\(_2\) addition. Combust Theory Model 17:316–334

    Article  Google Scholar 

  23. El-Asrag HA, Ju Y (2014) Direct numerical simulations of NO\(_{x}\) effect on multistage autoignition of DME/air mixture in the negative temperature coefficient regime for stratified HCCI engine conditions. Combust Flame 161:256–269

    Article  Google Scholar 

  24. Bhagatwala A, Lu T, Chen JH (2014) Direct numerical simulations of HCCI/SACI with ethanol. Combust Flame 161:1826–1841

    Article  Google Scholar 

  25. Bhagatwala A, Sankaran R, Kokjohn S, Chen JH (2015) Numerical investigation of spontaneous flame propagation under RCCI conditions. Combust Flame 162:3412–3426

    Article  Google Scholar 

  26. Bansal G, Mascarenhas A, Chen JH (2015) Direct numerical simulations of autoignition in stratified dimethyl-ether (DME)/air turbulent mixtures. Combust Flame 162:688–702

    Article  Google Scholar 

  27. Yoo CS, Luo Z, Lu T, Kim H, Chen JH (2013) A DNS study of ignition characteristics of a lean \(iso\)-octane/air mixture under and SACI conditions. Proc Combust Inst 34:2985–2993

    Article  Google Scholar 

  28. Luong MB, Luo Z, Lu T, Chung SH, Yoo CS (2013) Direct numerical simulations of the ignition of lean primary reference fuel/air mixtures with temperature inhomogeneities. Combust Flame 160:2038–2047

    Article  Google Scholar 

  29. Kim SO, Luong MB, Chen JH, Yoo CS (2015) A DNS study of the ignition of lean PRF/air mixtures with temperature inhomogeneities under high pressure and intermediate temperature. Combust Flame 162:717–726

    Article  Google Scholar 

  30. Luong MB, Yu GH, Chung SH, Yoo CS (2017) Ignition of a lean PRF/air mixture under RCCI/SCCI conditions: a comparative DNS study. Proc Combust Inst 36:3623–3631

    Article  Google Scholar 

  31. Yu GH, Luong MB, Chung SH, Yoo CS (2019) Ignition characteristics of a temporally evolving \(n\)-heptane jet in an \(iso\)-octane/air stream under RCCI combustion-relevant conditions. Combust Flame 208:299–312

    Article  Google Scholar 

  32. An Y, Jaasim M, Vallinayagam R, Vedharaj S, Im HG, Johansson B (2018) Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline. Fuel 211:420–431

    Article  Google Scholar 

  33. Mittal G, Sung C-J (2006) Aerodynamics inside a rapid compression machine. Combust Flame 145:160–180

    Article  Google Scholar 

  34. Wang Y, Rutland CJ (2005) Effects of temperature and equivalence ratio on the ignition of \(n\)-heptane fuel spray in turbulent flow. Proc Combust Inst 30:893–900

    Article  Google Scholar 

  35. Kokjohn SL, Musculus MPB, Reitz RD (2015) Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling. Combust Flame 162:2729–2742

    Article  Google Scholar 

  36. Tang Q, Liu H, Yao M (2017) Simultaneous measurement of natural flame luminosity and emission spectra in a RCCI engine under different fuel stratification degrees. SAE Int J Engines 10:2017–01–0714

    Google Scholar 

  37. Schießl R, Maas U (2003) Analysis of endgas temperature fluctuations in an SI engine by laser-induced fluorescence. Combust Flame 133:19–27

    Article  Google Scholar 

  38. Kaiser SA, Schild M, Schulz C (2013) Thermal stratification in an internal combustion engine due to wall heat transfer measured by laser-induced fluorescence. Proc Combust Inst 34:2911–2919

    Article  Google Scholar 

  39. Söderberg F, Johansson B, Lindoff B (1998) Wavelet analysis of in-cylinder ldv measurements and correlation against heat-release. SAE paper 107:444–456

    Google Scholar 

  40. Funk C,  Sick V, Reuss DL, Dahm WJA, Turbulence properties of high and low swirl in-cylinder flows, SAE paper (2002) 2002–01–2841

    Google Scholar 

  41. Miles PC (2008) Turbulent flow structure in direct-injection, swirl-supported diesel engines. In: Flow and combustion in reciprocating engines, experimental fluid mechanics, Springer, pp 173–256

    Google Scholar 

  42. Akkerman V, Ivanov M, Bychkov V (2009) Turbulent flow produced by piston motion in a spark-ignition engine. Flow Turbul Combust 82:317–337

    Article  MATH  Google Scholar 

  43. Petersen BR, Ghandhi JB (2010) High resolution scalar dissipation and turbulence length scale measurements in an internal combustion engine. SAE Int J Engines 3:65–83

    Article  Google Scholar 

  44. Zeldovich YB (1980) Regime classification of an exothermic reaction with nonuniform initial conditions. Combust Flame 39:211–214

    Article  Google Scholar 

  45. Gu X, Emerson D, Bradley D (2003) Modes of reaction front propagation from hot spots. Combust Flame 133:63–74

    Article  Google Scholar 

  46. Bradley D, Morley C, Gu XJ, Emerson DR (2002) Amplified pressure waves during autoignition: Relevance to CAI engines. SAE Technical Paper (2002) 2002–01–2868

    Google Scholar 

  47. Lee JH, Knystautas R, Yoshikawa N (1978) Photochemical initiation of gaseous detonations. Acta Astronautica 5:971–982

    Article  Google Scholar 

  48. Lee JHS (2008) The Detonation Phenomenon. Cambridge University Press

    Google Scholar 

  49. Su J, Dai P, Chen Z (2020) Detonation development from a hot spot in methane/air mixtures: effects of kinetic models. Int J Engine Res 146808742094461

    Google Scholar 

  50. Gao Y, Dai P, Chen Z (2020) Numerical studies on autoignition and detonation development from a hot spot in hydrogen/air mixtures. Combust Theo Modell 24:245–261

    Article  MathSciNet  Google Scholar 

  51. Bates L, Bradley D, Paczko G, Peters N (2016) Engine hot spots: modes of auto-ignition and reaction propagation. Combust Flame 166:80–85

    Article  Google Scholar 

  52. Bates L, Bradley D (2017) Deflagrative, auto-ignitive, and detonative propagation regimes in engines. Combust Flame 175:118–122

    Article  Google Scholar 

  53. Peters N, Kerschgens B, Paczko G (2013) Super-knock prediction using a refined theory of turbulence. SAE Int J Engines 6:953–967

    Article  Google Scholar 

  54. Dai P, Chen Z, Chen S, Ju Y (2015) Numerical experiments on reaction front propagation in n-heptane/air mixture with temperature gradient. Proc Combust Inst 35:3045–3052

    Article  Google Scholar 

  55. Yu H, Chen Z (2015) End-gas autoignition and detonation development in a closed chamber. Combust Flame 162:4102–4111

    Article  Google Scholar 

  56. Dai P, Qi C, Chen Z (2017) Effects of initial temperature on autoignition and detonation development in dimethyl ether/air mixtures with temperature gradient. Proc Combust Inst 36:3643–3650

    Article  Google Scholar 

  57. Terashima H, Matsugi A, Koshi M (2017) Origin and reactivity of hot-spots in end-gas autoignition with effects of negative temperature coefficients: Relevance to pressure wave developments. Combust Flame 184:324–334

    Article  Google Scholar 

  58. Pan J, Wei H, Shu G, Chen R (2017) Effect of pressure wave disturbance on auto-ignition mode transition and knocking intensity under enclosed conditions. Combust Flame 185:63–74

    Article  Google Scholar 

  59. Wei H, Chen C, Shu G, Liang X, Zhou L (2018) Pressure wave evolution during two hotspots autoignition within end-gas region under internal combustion engine-relevant conditions. Combust Flame 189:142–154

    Article  Google Scholar 

  60. Sow A, Lee BJ, Hernández Pérez FE, Im HG (2019) Detonation onset in a thermally stratified constant volume reactor. Proc Combust Inst 37:3529–3536

    Article  Google Scholar 

  61. Pan J, Wei H, Shu G, Chen Z, Zhao P (2016) The role of low temperature chemistry in combustion mode development under elevated pressures. Combust Flame 174:179–193

    Article  Google Scholar 

  62. Pan J, Dong S, Wei H, Li T, Shu G, Zhou L (2019) Temperature gradient induced detonation development inside and outside a hotspot for different fuels. Combust Flame 205:269–277

    Article  Google Scholar 

  63. Desai S, Sankaran R, Im HG (2019) Unsteady deflagration speed of an auto-ignitive dimethyl-ether (DME)/air mixture at stratified conditions. Proc Combust Inst 37:4717–4727

    Article  Google Scholar 

  64. Desai S, Sankaran R, Im HG (2020) Auto-ignitive deflagration speed of methane (CH\(_4\)) blended dimethyl-ether (DME)/air mixtures at stratified conditions. Combust Flame 211:377–391

    Article  Google Scholar 

  65. Robert A, Richard S, Colin O, Martinez L, De Francqueville L (2015) LES prediction and analysis of knocking combustion in a spark ignition engine. Proc Combust Inst 35:2941–2948

    Article  Google Scholar 

  66. Robert A, Richard S, Colin O, Poinsot T (2015) LES study of deflagration to detonation mechanisms in a downsized spark ignition engine. Combust Flame 162:2788–2807

    Article  Google Scholar 

  67. Ali MJM, Luong MB, Sow A, Hernández Pérez FE, Im HG (2018) Probabilistic approach to predict abnormal combustion in spark ignition engines. SAE paper 2018–01–1722

    Google Scholar 

  68. Wei H, Chen C, Zhou H, Zhao W, Ren Z (2016) Effect of turbulent mixing on the end gas auto-ignition of n-heptane/air mixtures under IC engine-relevant conditions. Combust Flame 174:25–36

    Article  Google Scholar 

  69. Chen L, Wei H, Chen C, Feng D, Zhou L, Pan J (2019) Numerical investigations on the effects of turbulence intensity on knocking combustion in a downsized gasoline engine. Energy 166:318–325

    Article  Google Scholar 

  70. Zhong L, Liu C (2019) Numerical analysis of end-gas autoignition and pressure oscillation in a downsized SI engine using large eddy simulation. Energies 12:3909

    Article  Google Scholar 

  71. Zhang T, Sun W, Wang L, Ju Y (2019) Effects of low-temperature chemistry and turbulent transport on knocking formation for stratified dimethyl ether/air mixtures. Combust Flame 200:342–353

    Article  Google Scholar 

  72. Nogawa T, Terashima H (2020) Effects of globally stratified temperature distributions and NTC characteristics on end-gas combustion modes. Combust Sci Technol 1–25

    Google Scholar 

  73. Wang L, Peters N (2006) The length-scale distribution function of the distance between extremal points in passive scalar turbulence. J Fluid Mech 554:457–475

    Article  MATH  Google Scholar 

  74. Pal P, Valorani M, Arias PG, Im HG, Wooldridge MS, Ciottoli PP, Galassi RM (2017) Computational characterization of ignition regimes in a syngas/air mixture with temperature fluctuations. Proc Combust Inst 36:3705–3716

    Article  Google Scholar 

  75. Luong MB, Lu T, Chung SH, Yoo CS (2014) Direct numerical simulations of the ignition of a lean biodiesel/air mixture with temperature and composition inhomogeneities at high pressure and intermediate temperature. Combust Flame 161:2878–2889

    Article  Google Scholar 

  76. Luong MB, Yu GH, Lu T, Chung SH, Yoo CS (2015) Direct numerical simulations of ignition of a lean \(n\)-heptane/air mixture with temperature and composition inhomogeneities relevant to HCCI and SCCI combustion. Combust Flame 162:4566–4585

    Article  Google Scholar 

  77. Zhang J, Luong MB, Hernández Pérez FE, Han D, Im HG, Huang Z (2019) Exergy loss of dme/air mixtures and ethanol/air mixtures with temperature and concentration fluctuations under HCCI/SCCI conditions: a DNS study, submitted to proceedings of the combustion institute (2019)

    Google Scholar 

  78. Luong MB, Yu GH, Chung SH, Yoo CS (2017) Ignition of a lean PRF/air mixture under RCCI/SCCI conditions: chemical aspects. Proc Combust Inst 36:3587–3596

    Article  Google Scholar 

  79. Luong MB, Sankaran R, Yu GH, Chung SH, Yoo CS (2017) On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions. Combust Flame 183:309–321

    Article  Google Scholar 

  80. Echekki T, Chen JH (2003) Direct numerical simulation of autoignition in non-homogeneous hydrogen-air mixtures. Combust Flame 134:169–191

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by King Abdullah University of Science and Technology and used the resources of the KAUST Supercomputing Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh Bau Luong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luong, M.B., Im, H.G. (2022). Direct Numerical Simulation of Preignition and Knock in Engine Conditions. In: Gupta, A.K., De, A., Aggarwal, S.K., Kushari, A., Runchal, A.K. (eds) Advances in Energy and Combustion. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-2648-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2648-7_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2647-0

  • Online ISBN: 978-981-16-2648-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics