Skip to main content

Role of PID Control Techniques in Process Control System: A Review

  • Conference paper
  • First Online:
Data Engineering for Smart Systems

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 238))

Abstract

Process control system (PCS) is the mixture of chemical engineering and control engineering. Process control is the skill to supervise and alter a process to offer a preferred output. It is used in industry to sustain worth and improve presentation. Preferred output can be achieved with the use of proportional–integral–derivative ( PID) control in process control system. The majority of the process control systems used PID controller, for the reason of its easy configuration, ease of realization, and energetic investigation in tuning the PID. The methods discussed in the paper are classified from conventional to artificial intelligence (AI) employed for the PID controller. This paper aim is to concentrate on the journalism evaluation of PID controller in a period of process control system. The most important reason of this review paper is to present in comprehensive for the group of people to know the control of PID controller in industrial control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franklin GF, Powell JD, Emami-Naeini A (2010) Feedback control of dynamic systems. 6th edn, pp 19–27

    Google Scholar 

  2. Kang C-G (2016) Origin of stability analysis: “on governors” [historical perspectives]. IEEE Control Syst Mag 36(5):77–88

    Article  Google Scholar 

  3. Åström KJ, Kumar PR (2014) Control: a perspective. Automatica 50(1):3–43

    Article  MathSciNet  Google Scholar 

  4. Medaglia JD (2019) Clarifying cognitive control and the controllable connectome. Wiley Interdiscip Rev Cognit Sci 10(1):1471

    Article  Google Scholar 

  5. Bennett S (2000) The past of PID controllers. Ann Rev Control 25:43–53

    Article  Google Scholar 

  6. Bennett S (1993) Development of the PID controller. IEEE Control Syst Mag 13(6):58–62

    Article  Google Scholar 

  7. Ziegler JG, Nichols NB (1942) Optimum settings for automatic controllers. Trans ASME 64:759–768

    Google Scholar 

  8. Gawthrop P (1986) Self-tuning PID controllers: algorithms and implementation. IEEE Trans Autom Contr 31(3):201–209

    Article  Google Scholar 

  9. Zhuang M, Atherton DP (1993) Automatic tuning of optimum PID controllers. In IEEE Proceedings D (Control Theory and Applications), vol 140. IET, pp 216–224

    Google Scholar 

  10. Porter B, Jones AH (1992) Genetic tuning of digital PID controllers. Electr Lett 28(9):843–844

    Article  Google Scholar 

  11. Kristiansson B, Lennartson B (2002) Robust and optimal tuning of PI and PID controllers. IEEE Proc Contr Theory Appl 149(1):17–25

    Article  Google Scholar 

  12. Chan YF, Moallem M, Wang W (2007) Design and implementation of modular FPGA-based PID controllers. IEEE Trans Ind Electro 54(4):1898–1906

    Article  Google Scholar 

  13. Tzafestas S, Papanikolopoulos NP (1990) Incremental fuzzy expert PID control. IEEE Trans Ind Electr 37(5):365–371

    Article  Google Scholar 

  14. Verma B, Padhy PK (2018) Optimal PID controller design with adjustable maximum sensitivity. IET Contr Theory Appl 12(8):1156–1165

    Article  MathSciNet  Google Scholar 

  15. Kaya Y, Yamamura S (1962) A self-adaptive system with a variable-parameter PID controller. Trans Am Instit Electr Eng Part II Appl Ind 80(6):378–386

    Google Scholar 

  16. Ranjbaran K, Tabatabaei M (2018) Fractional order [PI], [PD] and [PI] [PD] controller design using Bode’s integrals. Int J Dyn Contr 6(1):200–212

    Article  MathSciNet  Google Scholar 

  17. Srivastava S, Pandit VS (2016) A PI/PID controller for time delay systems with desired closed loop time response and guaranteed gain and phase margins. J Process Control 37:70–77

    Article  Google Scholar 

  18. Alcántara S, Vilanova R, Pedret C (2013) PID control in terms of robustness/performance and servo/regulator trade-offs: A unifying approach to balanced autotuning. J Process Control 23:527–542

    Article  Google Scholar 

  19. Ang KH, Chong G, Li Y (2005) PID control system analysis, design, and technology. IEEE Trans Control Syst Technol 13(4):559–576

    Article  Google Scholar 

  20. Díaz-Rodríguez ID, Han S, Bhattacharyya SP (2019) Analytical design of PID controllers. Springer, Berlin. ISBN:978-3-030-18227-4

    Google Scholar 

  21. Aguilar R, Poznyak A, Martı́nez-Guerra R, Maya-Yescas R (2002) Temperature control in catalytic cracking reactors via a robust PID controller. J Process Control 12(6):695–705

    Google Scholar 

  22. Van Overschee P, Moons C, Van Brempt W, Vanvuchelen P, De Moor B (2000) RaPID: the end of heuristic PID tuning. In: Proceedings of the PID’00: IFAC workshop on digital control, Terrasa, Spain, 4–7 Apr 2000, pp 687–692

    Google Scholar 

  23. Kumar A, Morya R, Vashishath M (2013) Performance comparison between various tuning strategies: ciancone, cohen coon & ziegler-nicholas tuning methods. Int J Comput Technol 5(1):60–68

    Article  Google Scholar 

  24. Morilla FSD (2000) Methodologies for the tuning of PID controllers in the frequency domain. IFAC Proc Vol 147–152

    Google Scholar 

  25. Ye H-T, Li Z-Q (2015) PID neural network decoupling control based on hybrid particle swarm optimization and differential evolution. Int J Autom Comput pp 1–6. (Nov 2015)

    Google Scholar 

  26. Nor’Azlan, NA, Selamat NA, Yahya NM (2018) Multivariable PID controller design tuning using bat algorithm for activated sludge process. In: IOP Conference Series: Materials Science and Engineering, vol 342, p 12030

    Google Scholar 

  27. Mosaad AM, Attia MA, Abdelaziz AY (2019) Whale optimization algorithm to tune PID and PIDA controllers on AVR system. Ain Shams Eng J 10(4):755–767

    Article  Google Scholar 

  28. Kaliannan J, Baskaran A, Dey N, Ashour SA (2016) ‘Ant colony optimization algorithm based PID controller for LFC of single area power system with non-linearity and boiler dynamics.’ World J Model Simul 12(1):3–14

    Google Scholar 

  29. Foutch GL, Johannes AH (2003) Reactors in process engineering. In: Encyclopedia of physical science and technology, 00654-2

    Google Scholar 

  30. Balaton MG, Nagy L, Szeifert F (2012) Model-based split-range algorithm for the temperature control of a batch reactor

    Google Scholar 

  31. Yamamoto T, Yamada T, Fujii T, Hosokawa H (2006) Design and implementation of a GPC-based auto-tuning PID controller. In: IEEE international conference on industrial technology, pp 1920–1924

    Google Scholar 

  32. Xiao J, Shao C, Zhu L, Song T (2015). Batch reactor temperature control based on DMC-optimization PID. In: 2015 IEEE international conference on cyber technology in automation, control, and intelligent systems (CYBER). IEEE, pp 371–376. (June 2015)

    Google Scholar 

  33. Ridong Z, Sheng Wu, Furong G (2014) Improved PI controller based on predictive functional control for liquid level regulation in a coke fractionation tower. J Process Control 139(15):70–75

    Google Scholar 

  34. Zhang WL, Jiang HP (2005) The design and simulation of fuzzy PID controller with parameter adjustment for polymerizing-kettle. J Qingdao Univ Sci Technol 26(2):132–135

    Google Scholar 

  35. Zhao X, Zheng W (2009) Generalized pid algorithm for batch reactor's temperature control. In: 2009 WRI global congress on intelligent systems, vol 1. IEEE, pp 426–430. (May 2009)

    Google Scholar 

  36. Show KY, Lee DJ (2013) Bioreactor and bioprocess design for biohydrogen production. In: Biohydrogen. Elsevier, pp 317–337

    Google Scholar 

  37. Wayne Bequette B (2003) Process control, modeling, design and simulation. Prentice-Hall of India Private Limited, India

    Google Scholar 

  38. Khanduja N, Bhushan B (2016) Intelligent control of CSTR using IMC-PID and PSO-PID controller. In: 2016 IEEE 1st international conference on power electronics, intelligent control and energy systems (ICPEICES). IEEE, pp 1–6. (July 2016)

    Google Scholar 

  39. Chen C-T, Dai C-S (2001) Robust controller design for a class of nonlinear uncertain chemical processes. J Process Control 11:469–482

    Article  Google Scholar 

  40. Kashan MH, Nahavandi N, Kashan AH (2012) DisABC: a new artificial bee colony algorithm for binary optimization. Appl Soft Comput 12:342–352

    Article  Google Scholar 

  41. Neogi B, Islam SS, Chakraborty P, Barui S, Das A (2018) Introducing MIT rule toward improvement of adaptive mechanical prosthetic arm control model. In: Progress in intelligent computing techniques: theory, practice, and applications. Springer, Singapore, pp 379–388

    Google Scholar 

  42. Goud H, Swarnkar P (2018) Signal synthesis model reference adaptive controller with artificial intelligent technique for a control of continuous stirred tank reactor. Int J Chem React Eng 17(2)

    Google Scholar 

  43. Veselý V, Iľka A (2013) Gain-scheduled PID controller design. J Process Control 23:1141–1148

    Article  Google Scholar 

  44. de Oliveira V, Karimi A (2012) Robust and gain-scheduled PID controller design for condensing boilers by linear programming. In: IFAC proceedings, vol 45, pp 335–340

    Google Scholar 

  45. Aglar R, Poznyak A, Mart´ınez Guerra R, Maya Yescas R (2002) Temperature control in catalytic cracking reactors via robust PID controller. J Process Control 12(6):695–705

    Google Scholar 

  46. Mikhalevich S, Rossi F, Manenti F, Baydali S (2015) Robust PI/PID controller design for the reliable control of plug flow reactor. Chem Eng Trans 43:1525–1530

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dubey, V., Goud, H., Sharma, P.C. (2022). Role of PID Control Techniques in Process Control System: A Review. In: Nanda, P., Verma, V.K., Srivastava, S., Gupta, R.K., Mazumdar, A.P. (eds) Data Engineering for Smart Systems. Lecture Notes in Networks and Systems, vol 238. Springer, Singapore. https://doi.org/10.1007/978-981-16-2641-8_62

Download citation

Publish with us

Policies and ethics