Skip to main content

Cytotoxic Activity of Raphanus sativus Linn. on Selected Cancer Cell Lines and Mechanistic Pathways Predicted Through Mathematical Modeling

  • Conference paper
  • First Online:
Modelling, Simulation and Applications of Complex Systems (CoSMoS 2019)

Abstract

Studies have shown different effects of Raphanus sativus L. (RS) extract on different cancer cell types. However, the dynamics of gene regulation between RS and cancer is still unknown. In this study, a mathematical model was incorporated to link cell cycle regulation pathways associated with the pharmacognosy of radish extracts towards breast cancer (BC), chronic myelogenous leukemia (CML), and colorectal cancer (CC). The cell cycle regulation pathways considered were MAPK/ERK and PI3K/Akt signaling pathways. A model created using ordinary differential equations was used to simulate the steady state concentrations of the proteins in both pathways, before and after exposure to radish extracts. Among the proteins ubiquitous in these pathways, Cyclin D1-CDK complex and p53 were found to be predominantly dysregulated in most cancers. The expression of these proteins was used as the benchmark of the pharmacognosy of radish extracts. Our simulation showed a decreasing trend in the binding specificities (\(K_M\)) of RS with Cyclin D1-CDK complex and p53 respectively from CML \(\left[ 5\,\upmu \mathrm{M}, 100 \,\upmu \mathrm{M}\right] \), CC \([2.5 \times 10^{-2}\,\upmu \mathrm{M}, 10\,\upmu \mathrm{M}]\) up to BC \([10^{-6}\,\upmu \mathrm{M}, 10^{-3}\,\upmu \mathrm{M}]\) which led to a decrease in Cyclin D1-CDK complex (90.74% for BC, 73.42% for CC, 1.10% for CML) and an increase in p53 (83.47% for BC, 62.75% for CC, 5.69% for CML). This suggests that the anticancer activity of RS was through the moderation of cell proliferation and induction of apoptosis in malignant neoplasms. Hence, the model proposed that RS had high chemotherapeutic activity on BC while having moderate efficacy on CC and insignificant efficacy on CML as substantiated by cytotoxicity assays on MCF-7 and HT-29 which both exhibited \(IC_{50} < 20~\upmu \)g/mL and K562 trials which gave \(IC_{50} > 100\,\upmu \)g/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas, T., Dutta, A.: p21 in cancer: intricate networks and multiple activities. Nature Rev. Cancer 9(6), 400–414 (2009). https://doi.org/10.1038/nrc2657

    Article  Google Scholar 

  2. Au, W.Y., et al.: Chronic myeloid leukemia in Asia. Int. J. Hematol. 89(1), 14–23 (2009). https://doi.org/10.1007/s12185-008-0230-0

    Article  MathSciNet  Google Scholar 

  3. Beevi, S.S., Mangamoori, L.N., Subathra, M., Edula, J.R.: Hexane extract of Raphanus sativus L. roots inhibits cell proliferation and induces apoptosis in human cancer cells by modulating genes related to apoptotic pathway. Plant Foods Hum. Nutr. 65(3), 200–209 (2010). https://doi.org/10.1007/s11130-010-0178-0

  4. Berg, J.M.J.M., Tymoczko, J.L., Stryer, L., Stryer, L.: Biochemistry. W.H. Freeman, New York (2002)

    Google Scholar 

  5. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)

    Google Scholar 

  6. Buban, C.E.: Colorectal cancer curable if detected early | Inquirer Business (2013)

    Google Scholar 

  7. Bykov, V.J., Eriksson, S.E., Bianchi, J., Wiman, K.G.: Targeting mutant p53 for efficient cancer therapy. Nat. Rev. Cancer 18(2), 89 (2018)

    Article  Google Scholar 

  8. Cragg, G.M., Newman, D.J.: Natural Products as Sources of Antitumor Agents

    Google Scholar 

  9. Crown, J., O’Shaughnessy, J., Gullo, G.: Emerging targeted therapies in triple-negative breast cancer. Ann. Oncol. 23(suppl 6), vi56–vi65 (2012). https://doi.org/10.1093/annonc/mds196

  10. Dang, C.V.: MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harbor Perspect. Med. 3(8), a014,217 (2013). https://doi.org/10.1101/cshperspect.a014217

  11. Donato, N.J., et al.: BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 101(2), 690–698 (2003). https://doi.org/10.1182/blood.V101.2.690

    Article  Google Scholar 

  12. Druker, B.J., et al.: Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344(14), 1031–1037 (2001). https://doi.org/10.1056/NEJM200104053441401

    Article  Google Scholar 

  13. Duffy, M.J., Synnott, N.C., McGowan, P.M., Crown, J., O’Connor, D., Gallagher, W.M.: p53 as a target for the treatment of cancer. Cancer Treat. Rev. 40(10), 1153–1160 (2014). https://doi.org/10.1016/j.ctrv.2014.10.004

    Article  Google Scholar 

  14. Eckert, L.B., et al.: Involvement of ras activation in human breast cancer cell signaling, invasion, and Anoikis. Cancer Res. 64(13), 4585–4592 (2004). https://doi.org/10.1158/0008-5472.CAN-04-0396

    Article  Google Scholar 

  15. Furqan, M., Akinleye, A., Mukhi, N., Mittal, V., Chen, Y., Liu, D.: STAT inhibitors for cancer therapy. J. Hematol. Oncol. 6(1), 90 (2013). https://doi.org/10.1186/1756-8722-6-90

    Article  Google Scholar 

  16. Geran, R.I.: Protocols for screening chemical agents and natural products against animal tumors and other biological systems (3rd edn.) Cancer Chemother. Rep. 3, 51–61 (1972)

    Google Scholar 

  17. Goi, T., Yamaguchi, A., Nakagawara1, G., Urano, T., Shiku, H., Furukawa, K.: Reduced expression of deleted colorectal carcinoma (DCC) protein in established colon cancers. Br. J. Cancer 77(3), 466–471 (1998)

    Google Scholar 

  18. Gollob, J.A., Wilhelm, S., Carter, C., Kelley, S.L.: Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Semin. Oncol. 33(4), 392–406 (2006). https://doi.org/10.1053/j.seminoncol.2006.04.002

    Article  Google Scholar 

  19. Gómez-Casares, M.T., et al.: MYC antagonizes the differentiation induced by imatinib in chronic myeloid leukemia cells through downregulation of p27KIP1. Oncogene 32(17), 2239–2246 (2013). https://doi.org/10.1038/onc.2012.246

    Article  Google Scholar 

  20. Gong, H., Zuliani, P., Komuravelli, A., Faeder, J.R., Clarke, E.M.: Analysis and verification of the HMGB1 signaling pathway. BMC Bioinform. 11(Suppl 7), S10 (2010). https://doi.org/10.1186/1471-2105-11-S7-S10

    Article  Google Scholar 

  21. Jacinto, S.D., Chun, E.A.C., Montuno, A.S., Shen, C.C., Espineli, D.L., Ragasa, C.Y.: Cytotoxic cardenolide and sterols from Calotropis gigantea. Nat. Prod. Commun. 6(6), 803–6 (2011)

    Google Scholar 

  22. John, P.C.L., Mews, M., Moore, R.: Cyclin/CDK complexes: their involvement in cell cycle progression and mitotic division. Protoplasma 216(3–4), 119–142 (2001). https://doi.org/10.1007/BF02673865

    Article  Google Scholar 

  23. Johnson, S.M., et al.: Novel expression patterns of PI3K/Akt/mTOR signaling pathway components in colorectal cancer. J. Am. Coll. Surg. 210(5), 767–776 (2010). https://doi.org/10.1016/j.jamcollsurg.2009.12.008

    Article  Google Scholar 

  24. Kamran, M.Z., Patil, P., Gude, R.P.: Role of STAT3 in cancer metastasis and translational advances. BioMed Res. Int. 2013 (2013). https://doi.org/10.1155/2013/421821

  25. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., Morishima, K.: KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45(D1), D353–D361 (2017). https://doi.org/10.1093/nar/gkw1092

    Article  Google Scholar 

  26. Kanehisa, M., Goto, S.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30 (2000). https://doi.org/10.1093/nar/28.1.27

    Article  Google Scholar 

  27. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M.: KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44(D1), D457–D462 (2016). https://doi.org/10.1093/nar/gkv1070

    Article  Google Scholar 

  28. Kanehisa Laboratories: KEGG PATHWAY: Colorectal cancer - Homo sapiens (human)

    Google Scholar 

  29. Kanehisa Laboratories: KEGG PATHWAY: Chronic myeloid leukemia - Homo sapiens (human) (2017)

    Google Scholar 

  30. Kang, H.W., et al.: A mathematical model for microrna in lung cancer. PLoS ONE 8(1), e53,663 (2013). https://doi.org/10.1371/journal.pone.0053663

  31. Kasper, D., Fauci, A., Hauser, S., Longo, D., Jameson, J., Loscalzo, J.: Harrison’s principles of internal medicine, 19e, vol. 1. Mcgraw-Hill (2015)

    Google Scholar 

  32. Kaymaz, B.T., et al.: Repression of STAT3, STAT5A, and STAT5B expressions in chronic myelogenous leukemia cell line K-562 with unmodified or chemically modified siRNAs and induction of apoptosis. Ann. Hematol. 92(2), 151–162 (2013). https://doi.org/10.1007/s00277-012-1575-2

    Article  Google Scholar 

  33. Kim, J.K., Diehl, J.A.: Nuclear cyclin D1: an oncogenic driver in human cancer. J. Cell. Physiol. 220(2), 292–296 (2009). https://doi.org/10.1002/jcp.21791

    Article  Google Scholar 

  34. Kim, W.K., et al.: Radish (Raphanus sativus L. leaf) ethanol extract inhibits protein and mRNA expression of ErbB(2) and ErbB(3) in MDA-MB-231 human breast cancer cells. Nutr. Res. Pract. 5(4), 288–93 (2011). https://doi.org/10.4162/nrp.2011.5.4.288

  35. Koh, G., Teong, H.F.C., Clement, M.V., Hsu, D., Thiagarajan, P.: A decompositional approach to parameter estimation in pathway modeling: a case study of the Akt and MAPK pathways and their crosstalk. Bioinformatics 22(14), e271–e280 (2006). https://doi.org/10.1093/bioinformatics/btl264

    Article  Google Scholar 

  36. Krimpenfort, P., Song, J.Y., Proost, N., Zevenhoven, J., Jonkers, J., Berns, A.: Deleted in colorectal carcinoma suppresses metastasis in p53-deficient mammary tumours. Nature 482(7386), 538–541 (2012). https://doi.org/10.1038/nature10790

    Article  Google Scholar 

  37. Lane, D.P., Cheok, C.F., Lain, S.: p53-based cancer therapy. Cold Spring Harbor Perspect. Biol. 2(9), a001,222 (2010). https://doi.org/10.1101/cshperspect.a001222

  38. Li, C., et al.: PD-0332991 induces G1 arrest of colorectal carcinoma cells through inhibition of the cyclin-dependent kinase-6 and retinoblastoma protein axis. Oncol. Lett. 7(5), 1673–1678 (2014). https://doi.org/10.3892/ol.2014.1957

    Article  Google Scholar 

  39. Li, Y., Chinni, S.R., Sarkar, F.H.: Selective growth regulatory and pro-apoptotic effects of DIM is mediated by AKT and NF-kappaB pathways in prostate cancer cells. Front Biosci 10, 236–43 (2005)

    Article  Google Scholar 

  40. Mayer, I.A., Arteaga, C.L.: PIK3CA activating mutations: a discordant role in early versus advanced hormone-dependent estrogen receptor-positive breast cancer? J. Clin. Oncol. 32(27), 2932–2934 (2014). https://doi.org/10.1200/JCO.2014.55.9591

    Article  Google Scholar 

  41. McCain, J.: The MAPK (ERK) pathway: investigational combinations for the treatment of BRAF-mutated metastatic melanoma. P T Peer-Review. J. Formulary Manage. 38(2), 96–108 (2013)

    MathSciNet  Google Scholar 

  42. Mehlen, P., Rabizadeh, S., Snipas, S.J., Assa-Munt, N., Salvesen, G.S., Bredesen, D.E.: The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature 395(6704), 801–804 (1998). https://doi.org/10.1038/27441

    Article  Google Scholar 

  43. Moreno-Bueno, G., et al.: Cyclin D1 gene (CCND1) mutations in endometrial cancer. Oncogene 22(38), 6115–6118 (2003). https://doi.org/10.1038/sj.onc.1206868

    Article  Google Scholar 

  44. Morse, M.A., Stoner, G.D.: Cancer chemoprevention: principles and prospects. Carcinogenesis 14(9), 1737–1746 (1993)

    Article  Google Scholar 

  45. Muller, P.A.J., Vousden, K.H.: Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25(3), 304–17 (2014). https://doi.org/10.1016/j.ccr.2014.01.021

    Article  Google Scholar 

  46. Ngelangel, C.A., Wang, E.H.M.: Cancer and the Philippine cancer control program. Jpn. J. Clin. Oncol. 32, 52–61 (2002)

    Article  Google Scholar 

  47. Ngoma, T.: World health organization cancer priorities in developing countries. Ann. Oncol. 17, viii9–viii14 (2006)

    Google Scholar 

  48. Nilsson, J.A., Cleveland, J.L.: Myc pathways provoking cell suicide and cancer. Oncogene 22(56), 9007–9021 (2003). https://doi.org/10.1038/sj.onc.1207261

    Article  Google Scholar 

  49. Peltomäki, P.: Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum. Mol. Genet. 10(7), 735–40 (2001)

    Article  Google Scholar 

  50. Polak, R., Buitenhuis, M.: The PI3K/PKB signaling module as key regulator of hematopoiesis: implications for therapeutic strategies in leukemia. Blood 119(4), 911–23 (2012). https://doi.org/10.1182/blood-2011-07-366203

    Article  Google Scholar 

  51. Pópulo, H., Lopes, J.M., Soares, P.: The mTOR signalling pathway in human cancer. Int. J. Mol. Sci. 13(2), 1886–1918 (2012). https://doi.org/10.3390/ijms13021886

    Article  Google Scholar 

  52. Prakash, D., Sharma, G. (eds.): Phytochemicals of nutraceutical importance. CABI, Wallingford (2014). https://doi.org/10.1079/9781780643632.0000

  53. Roberts, P.J., Der, C.J.: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26(22), 3291–3310 (2007). https://doi.org/10.1038/sj.onc.1210422

    Article  Google Scholar 

  54. Rochlitz, C.F., Herrmann, R., de Kant, E.: Overexpression and amplification of c-myc during progression of human colorectal cancer. Oncology 53(6), 448–54 (1996). https://doi.org/10.1159/000227619

    Article  Google Scholar 

  55. Rosen, L.S., Ashurst, H.L., Chap, L.: Targeting signal transduction pathways in metastatic breast cancer: a comprehensive review. Oncologist 15(3), 216–35 (2010). https://doi.org/10.1634/theoncologist.2009-0145

    Article  Google Scholar 

  56. Rottenberg, S., Jonkers, J.: MEK inhibition as a strategy for targeting residual breast cancer cells with low DUSP4 expression. Breast Cancer Res. 14(6), 324 (2012). https://doi.org/10.1186/bcr3327

    Article  Google Scholar 

  57. Saini, K.S., et al.: Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat. Rev. 39(8), 935–46 (2013). https://doi.org/10.1016/j.ctrv.2013.03.009

    Article  Google Scholar 

  58. Srinivasan, D., Plattner, R.: Activation of Abl tyrosine kinases promotes invasion of aggressive breast cancer cells. Can. Res. 66(11), 5648–5655 (2006). https://doi.org/10.1158/0008-5472.CAN-06-0734

    Article  Google Scholar 

  59. Srinivasan, D., Sims, J.T., Plattner, R.: Aggressive breast cancer cells are dependent on activated Abl kinases for proliferation, anchorage-independent growth and survival. Oncogene 27(8), 1095–1105 (2008). https://doi.org/10.1038/sj.onc.1210714

    Article  Google Scholar 

  60. Steelman, L.S., et al.: Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging 3(3), 192–222 (2011). https://doi.org/10.18632/aging.100296

    Article  Google Scholar 

  61. Tan, M.C.S., Enriquez, M.L.D., Arcilla, R.G., Noel, M.G.: Determining the apoptotic-inducing property of isothiocyanates extracted from three cultivars of Raphanus sativus Linn. Using the comet assay. J. Appl. Pharm. Sci. 7(9), 44–51 (2017). https://doi.org/10.7324/JAPS.2017.70906

  62. Tsygvintsev, A., Marino, S., Kirschner, D.E.: A mathematical model of gene therapy for the treatment of cancer. In: Mathematical Methods and Models in Biomedicine, pp. 367–385. Springer (2013)

    Google Scholar 

  63. Tubeza, P.C.: Breast cancer is the most prevalent in PH — Inquirer News (2012)

    Google Scholar 

  64. Wang, Y., et al.: Mutant N-RAS protects colorectal cancer cells from stress-induced apoptosis and contributes to cancer development and progression. Cancer Discov. 3(3), 294–307 (2013). https://doi.org/10.1158/2159-8290.CD-12-0198

    Article  Google Scholar 

  65. Wee, K.B., Aguda, B.D.: Akt versus p53 in a network of oncogenes and tumor suppressor genes regulating cell survival and death. Biophys. J. 91(3), 857–865 (2006). https://doi.org/10.1529/BIOPHYSJ.105.077693

    Article  Google Scholar 

  66. WHO — early diagnosis and screening (2017)

    Google Scholar 

  67. Xiong, A., Yang, Z., Shen, Y., Zhou, J., Shen, Q.: Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers 6(2), 926–957 (2014). https://doi.org/10.3390/cancers6020926

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelyn Lao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lao, A. et al. (2021). Cytotoxic Activity of Raphanus sativus Linn. on Selected Cancer Cell Lines and Mechanistic Pathways Predicted Through Mathematical Modeling. In: Mohd, M.H., Misro, M.Y., Ahmad, S., Nguyen Ngoc, D. (eds) Modelling, Simulation and Applications of Complex Systems. CoSMoS 2019. Springer Proceedings in Mathematics & Statistics, vol 359. Springer, Singapore. https://doi.org/10.1007/978-981-16-2629-6_9

Download citation

Publish with us

Policies and ethics