Skip to main content

Subgraph Augmentation with Application to Graph Mining

  • Chapter
  • First Online:
Graph Data Mining

Part of the book series: Big Data Management ((BIGDM))

  • 1554 Accesses

Abstract

Graph classification, which aims to identify the category labels of graphs, plays a significant role in drug classification, toxicity detection, protein analysis etc. However, the limitation of the general scale of benchmark datasets makes easily causes graph classification models to fall into overfitting and undergeneralization. In this chapter, the M-Evolve framework is introduced for graph classification (Zhou et al., Data augmentation for graph classification. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 2341–2344, 2020; Zhou et al., M-evolve: structural-mapping-based data augmentation for graph classification. In: IEEE Transactions on Network Science and Engineering, pp. 1–1, 2020), a novel technique for expanding graph structured data spaces and optimizing graph classifiers. Typical graph tasks such as node classification and link prediction are unified to generate graph classification patterns, demonstrating some applications to multiple tasks in graph mining. One of the main contributions of this chapter is to apply the technique of subgraph augmentation for various tasks. The M-Evolve is general and flexible, which can be easily combined with existing graph classification models. Extensive experiments are conducted on real datasets to illustrate the effectiveness of our framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S.V.N., Smola, A.J., Kriegel, H.-P.: Protein function prediction via graph kernels. Bioinformatics 21(suppl_1), i47–i56 (2005)

    Google Scholar 

  2. Duvenaud, D.K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A., Adams, R.P.: Convolutional networks on graphs for learning molecular fingerprints. In: Advances in Neural Information Processing Systems, pp. 2224–2232 (2015)

    Google Scholar 

  3. Yanardag, P., Vishwanathan, S.V.N.: Deep graph kernels. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374 (2015)

    Google Scholar 

  4. Zhou, J., Shen, J., Xuan, Q.: Data augmentation for graph classification. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 2341–2344 (2020)

    Google Scholar 

  5. Zhou, J., Shen, J., Yu, S., Chen, G., Xuan, Q.: M-evolve: structural-mapping-based data augmentation for graph classification. In: IEEE Transactions on Network Science and Engineering, pp. 1–1 (2020)

    Google Scholar 

  6. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  7. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In: Advances in Neural Information Processing Systems, pp. 5165–5175 (2018)

    Google Scholar 

  8. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12(9) (2011)

    Google Scholar 

  9. Neumann, M., Garnett, R., Bauckhage, C., Kersting, K.: Propagation kernels: efficient graph kernels from propagated information. Mach. Learn. 102(2), 209–245 (2016)

    Article  MathSciNet  Google Scholar 

  10. Shervashidze, N., Vishwanathan, S.V.N., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: Artificial Intelligence and Statistics, pp. 488–495 (2009)

    Google Scholar 

  11. Gärtner, T., Flach, P., Wrobel, S.: On graph kernels: hardness results and efficient alternatives. In: Learning Theory and Kernel Machines, pp. 129–143 (Springer, Berlin, 2003)

    Google Scholar 

  12. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 321–328 (2003)

    Google Scholar 

  13. Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., Vert, J.-P.: Extensions of marginalized graph kernels. In: Proceedings of the twenty-first International Conference on Machine Learning, p. 70 (2004)

    Google Scholar 

  14. Sugiyama, M., Borgwardt, K.: Halting in random walk kernels. In: Advances in Neural Information Processing Systems, pp. 1639–1647 (2015)

    Google Scholar 

  15. Borgwardt, K.M., Kriegel, H.-P.: Shortest-path kernels on graphs. In: Fifth IEEE International Conference on Data Mining (ICDM’05), p. 8. IEEE, Piscataway (2005)

    Google Scholar 

  16. Cai, H., Zheng, V.W., Chang, K.C.-C.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

    Article  Google Scholar 

  17. Chen, F., Wang, Y.-C., Wang, B., Jay Kuo, C.-C.: Graph representation learning: a survey. In: APSIPA Transactions on Signal and Information Processing, vol. 9 (2020)

    Google Scholar 

  18. Fu, C., Zheng, Y., Liu, Y., Xuan, Q., Chen, G.: Nes-tl: network embedding similarity-based transfer learning. IEEE Trans. Netw. Sci. Eng. 7(3), 1607–1618 (2019)

    Article  MathSciNet  Google Scholar 

  19. Guo, W., Shi, Y., Wang, S., Xiong, N.N.: An unsupervised embedding learning feature representation scheme for network big data analysis. IEEE Trans. Netw. Sci. Eng. 7(1), 115–126 (2019)

    Article  MathSciNet  Google Scholar 

  20. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec: learning distributed representations of graphs. Preprint. arXiv:1707.05005 (2017)

    Google Scholar 

  21. Dai, H., Dai, B., Song, L.: Discriminative embeddings of latent variable models for structured data. In: International Conference on Machine Learning, pp. 2702–2711 (2016)

    Google Scholar 

  22. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y., Saminathan, S.: subgraph2vec: learning distributed representations of rooted sub-graphs from large graphs. Preprint. arXiv:1606.08928 (2016)

    Google Scholar 

  23. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. Preprint. arXiv:1704.01212 (2017)

    Google Scholar 

  24. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks. Preprint. arXiv:1511.05493 (2015)

    Google Scholar 

  25. Jin, Y., JaJa, J.F.: Learning graph-level representations with recurrent neural networks. Preprint. arXiv:1805.07683 (2018)

    Google Scholar 

  26. You, J., Ying, R., Ren, X., Hamilton, W.L., Leskovec, J.: GraphRNN: generating realistic graphs with deep auto-regressive models. Preprint. arXiv:1802.08773 (2018)

    Google Scholar 

  27. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  28. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3693–3702 (2017)

    Google Scholar 

  29. Fey, M., Lenssen, J.E., Weichert, F., Müller, H.: SplineCNN: fast geometric deep learning with continuous b-spline kernels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 869–877 (2018)

    Google Scholar 

  30. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. In: Advances in Neural Information Processing Systems, pp. 4800–4810 (2018)

    Google Scholar 

  31. Ma, Y., Wang, S., Aggarwal, C.C., Tang, J.: Graph convolutional networks with eigenpooling. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 723–731 (2019)

    Google Scholar 

  32. Zhao, T., Liu, Y., Neves, L., Woodford, O., Jiang, M., Shah, N.: Data augmentation for graph neural networks. Preprint. arXiv:2006.06830 (2020)

    Google Scholar 

  33. Wang, Y., Wang, W., Liang, Y., Cai, Y., Liu, J., Hooi, J.: NodeAug: semi-supervised node classification with data augmentation. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 207–217 (2020)

    Google Scholar 

  34. Spinelli, I., Scardapane, S., Scarpiniti, M., Uncini, A.: Efficient data augmentation using graph imputation neural networks. In: Progresses in Artificial Intelligence and Neural Systems, pp. 57–66 (Springer, Berlin, 2020)

    Google Scholar 

  35. Spinelli, I., Scardapane, S., Uncini, A.: Missing data imputation with adversarially-trained graph convolutional networks. Neural Netw. 129, 249–260 (2020)

    Article  Google Scholar 

  36. Zhou, T., Lü, L., Zhang, Y.-C.: Predicting missing links via local information. Eur. Phys. J. B 71(4), 623–630 (2009)

    Article  Google Scholar 

  37. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for graph classification. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  38. Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Hansch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. J. Med. Chem. 34(2), 786–797 (1991)

    Google Scholar 

  39. Helma, C., King, R.D., Kramer, S., Srinivasan, A.: The predictive toxicology challenge 2000–2001. Bioinformatics 17(1), 107–108 (2001)

    Article  Google Scholar 

  40. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)

    Article  Google Scholar 

  41. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc IEEE 104(1), 11–33 (2015)

    Article  Google Scholar 

  42. Oyetunde, T., Zhang, M., Chen, Y., Tang, Y., Lo, C.: BoostGAPFILL: improving the fidelity of metabolic network reconstructions through integrated constraint and pattern-based methods. Bioinformatics 33(4), 608–611 (2017)

    Google Scholar 

  43. Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 98–101 (2008)

    Article  Google Scholar 

  44. White, H.C., Boorman, S.A., Breiger, R.L.: Social structure from multiple networks. I. Blockmodels of roles and positions. Am. J. Soc. 81(4), 730–780 (1976)

    Google Scholar 

  45. Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Relational Data Mining, pp. 307–335. Springer, Berlin (2001)

    Google Scholar 

  46. Heckerman, D., Meek, C., Koller, D.: Probabilistic entity-relationship models, PRMS, and plate models. In: Introduction to Statistical Relational Learning, pp. 201–238 (2007)

    Google Scholar 

  47. Kipf, T.N., Welling, M.: Variational graph auto-encoders. Preprint. arXiv:1611.07308 (2016)

    Google Scholar 

  48. Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., Zhang, C.: Adversarially regularized graph autoencoder for graph embedding. Preprint. arXiv:1802.04407 (2018)

    Google Scholar 

  49. Spring, N., Mahajan, R., Wetherall, D., Anderson, T.: Measuring ISP topologies with rocketfuel. IEEE/ACM Trans. Netw. 12(1), 2–16 (2004)

    Article  Google Scholar 

  50. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  51. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  52. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  53. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. Preprint. arXiv:1609.02907 (2016)

    Google Scholar 

  54. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

    Google Scholar 

  55. Wu, J., He, J., Xu, J.: Demo-net: degree-specific graph neural networks for node and graph classification. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York (2019)

    Google Scholar 

  56. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018). A poster

    Google Scholar 

  57. Zheng, M., Allard, A., Hagmann, P., Alemán-Gómez, Y., Serrano, M.Á.: Geometric renormalization unravels self-similarity of the multiscale human connectome. Proc. Natl. Acad. Sci. 117(33), 20244–20253 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Xuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, J., Shen, J., Shan, Y., Xuan, Q., Chen, G. (2021). Subgraph Augmentation with Application to Graph Mining. In: Xuan, Q., Ruan, Z., Min, Y. (eds) Graph Data Mining. Big Data Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-2609-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2609-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2608-1

  • Online ISBN: 978-981-16-2609-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics