Skip to main content

Link Prediction Based on Hyper-Substructure Network

  • Chapter
  • First Online:
Graph Data Mining

Part of the book series: Big Data Management ((BIGDM))

Abstract

Link prediction has long been the focus in the analysis of network-structured data. Though straightforward and efficient, heuristic approaches like Common Neighbors perform link prediction with pre-defined assumptions and only use superficial structural features. While it is widely acknowledged that a node could be characterized by a bunch of neighbor nodes, network embedding algorithms and newly emerged graph neural networks still exploit structural features on the whole network, which may inevitably bring in noises and limits the scalability of those methods. In this chapter, we propose an end-to-end deep learning framework, namely hyper-substructure enhanced link predictor (HELP), for link prediction. HELP utilizes local topological structures from the neighborhood of the given node pairs, avoiding useless features. For further exploiting higher-order structural information, HELP also learns features from hyper-substructure network (HSN). Extensive experiments on five benchmark datasets have shown the state-of-the-art performance of HELP on link prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1993–2001 (2016)

    Google Scholar 

  2. Batagelj, V., Mrvar, A.: Pajek Datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/mix. USAir97.net (2006)

  3. Bojchevski, A., Klicpera, J., Perozzi, B., Blais, M., Kapoor, A., Lukasik, M., Günnemann, S.: Is pagerank all you need for scalable graph neural networks? In: Proceedings of the 15th MLG (2019)

    Google Scholar 

  4. Brin, S., Page, L.: The Anatomy of a Large-scale Hypertextual Web Search Engine (1998)

    Google Scholar 

  5. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: AAAI, vol. 16, pp. 1145–1152 (2016)

    Google Scholar 

  6. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: Scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135–144 (2017)

    Google Scholar 

  7. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd SIGKDD, pp. 855–864. ACM, New York (2016)

    Google Scholar 

  8. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of the 31st NeuralPS, pp. 1024–1034 (2017)

    Google Scholar 

  9. Jaccard, P.: Bulletin de la société vaudoise des sciences naturelles. Etude Comparative de la Distribution Florale dans une Portion des Alpes et des Jura 37, 547–579 (1901)

    Google Scholar 

  10. Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 538–543 (2002)

    Google Scholar 

  11. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

    Google Scholar 

  13. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

    Google Scholar 

  14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of 5th ICLR. OpenReview.net (2017)

    Google Scholar 

  15. Kovács, I.A., Luck, K., Spirohn, K., Wang, Y., Pollis, C., Schlabach, S., Bian, W., Kim, D.K., Kishore, N., Hao, T., et al.: Network-based prediction of protein interactions. Nature Commun. 10(1), 1–8 (2019)

    Article  Google Scholar 

  16. Leicht, E.A., Holme, P., Newman, M.E.: Vertex similarity in networks. Phys. Rev. E 73(2), 026120 (2006)

    Article  Google Scholar 

  17. Lü, L., Zhou, T.: Link prediction in complex networks: A survey. Physica A: Stat. Mech. Appl. 390(6), 1150–1170 (2011)

    Article  Google Scholar 

  18. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

    Google Scholar 

  19. Newman, M.E.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64(2), 025102 (2001)

    Article  Google Scholar 

  20. Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)

    Article  MathSciNet  Google Scholar 

  21. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th SIGKDD, pp. 701–710 (2014)

    Google Scholar 

  22. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)

    Article  Google Scholar 

  23. Salton, G., McGill, M.: Introduction to Modern Information Retrieval (1983)

    Google Scholar 

  24. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008)

    Google Scholar 

  25. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies with rocketfuel. ACM SIGCOMM Comput. Commun. Rev. 32(4), 133–145 (2002)

    Article  Google Scholar 

  26. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077 (2015)

    Google Scholar 

  27. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th ICLR (2018)

    Google Scholar 

  28. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008)

    Google Scholar 

  29. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd SIGKDD, pp. 1225–1234. ACM, New York (2016)

    Google Scholar 

  30. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  31. Yu, W., Cheng, W., Aggarwal, C.C., Zhang, K., Chen, H., Wang, W.: Netwalk: A flexible deep embedding approach for anomaly detection in dynamic networks. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2672–2681 (2018)

    Google Scholar 

  32. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In: Proceedings of 32nd NeurIPS, pp. 5171–5181 (2018)

    Google Scholar 

  33. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for graph classification. In: AAAI, vol. 18, pp. 4438–4445 (2018)

    Google Scholar 

  34. Zhang, J., Zheng, J., Chen, J., Xuan, Q.: Hyper-substructure enhanced link predictor. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, pp. 2305–2308 (2020)

    Google Scholar 

  35. Zhou, T., Lü, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phys. J. B 71(4), 623–630 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Xuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Chen, J., Xuan, Q. (2021). Link Prediction Based on Hyper-Substructure Network. In: Xuan, Q., Ruan, Z., Min, Y. (eds) Graph Data Mining. Big Data Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-2609-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2609-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2608-1

  • Online ISBN: 978-981-16-2609-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics