Skip to main content

Optical DNA Based Sensors for Cervical Cancers

  • Chapter
  • First Online:
Biomarkers and Biosensors for Cervical Cancer Diagnosis

Abstract

Optical biosensors are devices frequently used to detect different molecules in biological applications through their interaction with light. Optical biosensors have many advantages because they allow fast and direct detection of target molecules. So, they can be easily applied to different types of delicate or miniature point-of-care devices with high reliability. Although many different types of optical platforms are used in biosensing, fluorescent and colorimetric sensors have mostly been adapted for the detection of cervical cancer. Many studies are reporting rapid, low-cost, and disposable biosensors using fluorescently labeled probes with various fluorophores to detect human papillomavirus (HPV) DNA in a single assay. However, fluorescent biosensors can be adapted with nanoparticles, microbeads, and two-dimensional nanomaterials, and even Clustered regularly interspaced short palindromic repeats—CRISPR associated (CRISPR-Cas) for an improved limit of detection, easy separation of probes, simplification of sensor design and operation, etc. Similarly, many colorimetric sensors have been reported for the detection of different types of HPV DNA. Colorimetric sensors have a unique advantage as detection can be carried out with naked eyes without the need for any instrument but only has relatively moderate sensitivity. Additional techniques, such as loop-mediated isothermal amplification, DNAzymes, peptide nucleic acid, can be incorporated to improve its detection limit significantly. Besides, both fluorescence and colorimetric sensors can be applied to lateral flow assays, microfluidic systems, or microarrays for rapid and multiplexed detection of HPV. In this chapter, recent progress in the DNA-based optical biosensors for cervical cancer detection is summarized with emphasis on fluorescent and colorimetric sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1:515–528. https://doi.org/10.1038/nrd838

    Article  CAS  PubMed  Google Scholar 

  2. Damborský P, Švitel J, Katrlík J (2016) Optical biosensors. Essays Biochem 60:91–100. https://doi.org/10.1042/ebc20150010

    Article  PubMed  PubMed Central  Google Scholar 

  3. Heo JH, Cho HH, Lee JH (2014) Surfactant-free nanoparticle–DNA complexes with ultrahigh stability against salt for environmental and biological sensing. Analyst 139:5936–5944. https://doi.org/10.1039/C4AN01271B

    Article  CAS  PubMed  Google Scholar 

  4. Heo JH, Yi GS, Lee BS, Cho HH, Lee JW, Lee JH (2016) A significant enhancement of color transition from an on–off type achromatic colorimetric nanosensor for highly sensitive multi-analyte detection with the naked eye. Nanoscale 8:18341–18351. https://doi.org/10.1039/C6NR05919H

    Article  CAS  PubMed  Google Scholar 

  5. Shao B, Xiao Z (2020) Recent achievements in exosomal biomarkers detection by nanomaterials-based optical biosensors - a review. Anal Chim Acta 1114:74–84. https://doi.org/10.1016/j.aca.2020.02.041

    Article  CAS  PubMed  Google Scholar 

  6. Dickinson TA, White J, Kauer JS, Walt DR (1996) A chemical-detecting system based on a cross-reactive optical sensor array. Nature 382:697–700. https://doi.org/10.1038/382697a0

    Article  CAS  PubMed  Google Scholar 

  7. Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832. https://doi.org/10.1038/39834

    Article  CAS  PubMed  Google Scholar 

  8. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B Chem 54:3–15. https://doi.org/10.1016/S0925-4005(98)00321-9

    Article  CAS  Google Scholar 

  9. Rosenstein JK, Wanunu M, Merchant CA, Drndic M, Shepard KL (2012) Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat Methods 9:487–492. https://doi.org/10.1038/nmeth.1932

    Article  CAS  PubMed  Google Scholar 

  10. Miles BN, Ivanov AP, Wilson KA, Doğan F, Japrung D, Edel JB (2013) Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. Chem Soc Rev 42:15–28. https://doi.org/10.1039/c2cs35286a

    Article  CAS  PubMed  Google Scholar 

  11. Khanna Vinod K (2008) New-generation nano-engineered biosensors, enabling nanotechnologies and nanomaterials. Sens Rev 28:39–45. https://doi.org/10.1108/02602280810850017

    Article  Google Scholar 

  12. Pilolli R, Monaci L, Visconti A (2013) Advances in biosensor development based on integrating nanotechnology and applied to food-allergen management. TrAC Trends Anal Chem 47:12–26. https://doi.org/10.1016/j.trac.2013.02.005

    Article  CAS  Google Scholar 

  13. Huang X, Liu Y, Yung B, Xiong Y, Chen X (2017) Nanotechnology-enhanced no-wash biosensors for in vitro diagnostics of cancer. ACS Nano 11:5238–5292. https://doi.org/10.1021/acsnano.7b02618

    Article  CAS  PubMed  Google Scholar 

  14. Dhathathreyan A (2011) Real-time monitoring of Invertase activity immobilized in Nanoporous Aluminum oxide. J Phys Chem B 115:6678–6682. https://doi.org/10.1021/jp1122085

    Article  CAS  PubMed  Google Scholar 

  15. Hotta K, Yamaguchi A, Teramae N (2012) Nanoporous waveguide sensor with optimized Nanoarchitectures for highly sensitive label-free biosensing. ACS Nano 6:1541–1547. https://doi.org/10.1021/nn204494z

    Article  CAS  PubMed  Google Scholar 

  16. Heo JH, Kim K-I, Cho HH, Lee JW, Lee BS, Yoon S, Park KJ, Lee S, Kim J, Whang D et al. (2015) Ultrastable-stealth large gold nanoparticles with DNA directed biological functionality. Langmuir 31:13773–13782. https://doi.org/10.1021/acs.langmuir.5b03534

    Article  CAS  PubMed  Google Scholar 

  17. Celik M, Altuntas S, Buyukserin F (2018) Fabrication of nanocrater-decorated anodic aluminum oxide membranes as substrates for reproducibly enhanced SERS signals. Sensors Actuators B Chem 255:2871–2877. https://doi.org/10.1016/j.snb.2017.09.105

    Article  CAS  Google Scholar 

  18. Park J, Kim J, Kim S-Y, Cheong WH, Jang J, Park Y-G, Na K, Kim Y-T, Heo JH, Lee CY et al. (2018) Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci Adv 4:eaap9841. https://doi.org/10.1126/sciadv.aap9841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lizard G, Chignol MC, Souchier C, Roignot P, Chardonnet Y, Schmitt D (1998) Detection of low copy numbers of HPV DNA by fluorescent in situ hybridization combined with confocal microscopy as an alternative to in situ polymerase chain reaction. J Virol Methods 72:15–25. https://doi.org/10.1016/S0166-0934(98)00008-1

    Article  CAS  PubMed  Google Scholar 

  20. Lee JH, Yigit MV, Mazumdar D, Lu Y (2010) Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Deliv Rev 62:592–605. https://doi.org/10.1016/j.addr.2010.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bauch M, Toma K, Toma M, Zhang Q, Dostalek J (2014) Plasmon-enhanced fluorescence biosensors: a review. Plasmonics 9:781–799. https://doi.org/10.1007/s11468-013-9660-5

    Article  CAS  PubMed  Google Scholar 

  22. Dodeigne C, Thunus L, Lejeune R (2000) Chemiluminescence as diagnostic tool. A review. Talanta 51:415–439. https://doi.org/10.1016/S0039-9140(99)00294-5

    Article  CAS  PubMed  Google Scholar 

  23. Frías I, Avelino K, Silva R, Andrade C, Oliveira M (2015) Trends in biosensors for HPV: identification and diagnosis. J Sensors 2015:1–16. https://doi.org/10.1155/2015/913640

    Article  Google Scholar 

  24. Saylan Y, Erdem Ă–, Ăśnal S, Denizli A (2019) An alternative medical diagnosis method: biosensors for virus detection. Biosensors 9:65. https://doi.org/10.3390/bios9020065

    Article  CAS  PubMed Central  Google Scholar 

  25. Wang W, Pang D-W, Tang H-W (2014) Sensitive multiplexed DNA detection using silica nanoparticles as the target capturing platform. Talanta 128:263–267. https://doi.org/10.1016/j.talanta.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  26. Ricco R, Meneghello A, Enrichi F (2011) Signal enhancement in DNA microarray using dye doped silica nanoparticles: application to human papilloma virus (HPV) detection. Biosens Bioelectron 26:2761–2765. https://doi.org/10.1016/j.bios.2010.10.024

    Article  CAS  PubMed  Google Scholar 

  27. Peng X, Zhang Y, Lu D, Guo Y, Guo S (2019) Ultrathin Ti3C2 nanosheets based “off-on” fluorescent nanoprobe for rapid and sensitive detection of HPV infection. Sensors Actuators B Chem 286:222–229. https://doi.org/10.1016/j.snb.2019.01.158

    Article  CAS  Google Scholar 

  28. Xiang D-S, Zeng G-P, He Z-K (2011) Magnetic microparticle-based multiplexed DNA detection with biobarcoded quantum dot probes. Biosens Bioelectron 26:4405–4410. https://doi.org/10.1016/j.bios.2011.04.051

    Article  CAS  PubMed  Google Scholar 

  29. Yu-Hong W, Rui C, Ding L (2011) A quantum dots and superparamagnetic nanoparticle-based method for the detection of HPV DNA. Nanoscale Res Lett 6:461. https://doi.org/10.1186/1556-276X-6-461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shamsipur M, Nasirian V, Mansouri K, Barati A, Veisi-Raygani A, Kashanian S (2017) A highly sensitive quantum dots-DNA nanobiosensor based on fluorescence resonance energy transfer for rapid detection of nanomolar amounts of human papillomavirus 18. J Pharm Biomed Anal 136:140–147. https://doi.org/10.1016/j.jpba.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  31. Huang C-C, Yang Z, Lee K-H, Chang H-T (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew Chem Int Ed 46:6824–6828. https://doi.org/10.1002/anie.200700803

    Article  CAS  Google Scholar 

  32. Ray PC, Darbha GK, Ray A, Hardy W, Walker J (2007) A gold-nanoparticle-based fluorescence resonance energy transfer probe for multiplexed hybridization detection: accurate identification of bio-agents DNA. Nanotechnology 18:375504. https://doi.org/10.1088/0957-4484/18/37/375504

    Article  CAS  Google Scholar 

  33. He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C (2010) A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20:453–459. https://doi.org/10.1002/adfm.200901639

    Article  CAS  Google Scholar 

  34. Tan C, Yu P, Hu Y, Chen J, Huang Y, Cai Y, Luo Z, Li B, Lu Q, Wang L et al. (2015) High-yield exfoliation of ultrathin two-dimensional ternary chalcogenide nanosheets for highly sensitive and selective fluorescence DNA sensors. J Am Chem Soc 137:10430–10436. https://doi.org/10.1021/jacs.5b06982

    Article  CAS  PubMed  Google Scholar 

  35. Zhang W, Li S, Li X, Liu M, Cui T, Fu H, Yang M, Zhong W, Xu B, Yue W (2020) PEG-PtS2 nanosheet-based fluorescence biosensor for label-free human papillomavirus genotyping. Microchim Acta 187:408. https://doi.org/10.1007/s00604-020-04383-8

    Article  CAS  Google Scholar 

  36. Zhang H, Liu L, Li C-W, Fu H, Chen Y, Yang M (2011) Multienzyme-nanoparticles amplification for sensitive virus genotyping in microfluidic microbeads array using Au nanoparticle probes and quantum dots as labels. Biosens Bioelectron 29:89–96. https://doi.org/10.1016/j.bios.2011.07.074

    Article  CAS  PubMed  Google Scholar 

  37. Yue W, Zou H, Jin Q, Li C-W, Xu T, Fu H, Tzang LCH, Sun H, Zhao J, Yang M (2014) Single layer linear array of microbeads for multiplexed analysis of DNA and proteins. Biosens Bioelectron 54:297–305. https://doi.org/10.1016/j.bios.2013.10.034

    Article  CAS  PubMed  Google Scholar 

  38. Xu Y, Liu Y, Wu Y, Xia X, Liao Y, Li Q (2014) Fluorescent probe-based lateral flow assay for multiplex nucleic acid detection. Anal Chem 86:5611–5614. https://doi.org/10.1021/ac5010458

    Article  CAS  PubMed  Google Scholar 

  39. Kumvongpin R, Jearanaikoon P, Wilailuckana C, Sae-Ung N, Prasongdee P, Daduang S, Wongsena M, Boonsiri P, Kiatpathomchai W, Swangvaree SS et al. (2017) Detection assay for HPV16 and HPV18 by loopmediated isothermal amplification with lateral flow dipstick tests. Mol Med Rep 15:3203–3209. https://doi.org/10.3892/mmr.2017.6370

    Article  CAS  PubMed  Google Scholar 

  40. Tsou JH, Leng Q, Jiang F (2019) A CRISPR test for detection of circulating nuclei acids. Transl Oncol 12:1566–1573. https://doi.org/10.1016/j.tranon.2019.08.011

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yang Z, Yi C, Lv S, Sheng Y, Wen W, Zhang X, Wang S (2019) Development of a lateral flow strip biosensor based on copper oxide nanoparticles for rapid and sensitive detection of HPV16 DNA. Sensors Actuators B Chem 285:326–332. https://doi.org/10.1016/j.snb.2019.01.056

    Article  CAS  Google Scholar 

  42. Chan CP, Tzang LC, Sin KK, Ji SL, Cheung KY, Tam TK, Yang MM, Renneberg R, Seydack M (2007) Biofunctional organic nanocrystals for quantitative detection of pathogen deoxyribonucleic acid. Anal Chim Acta 584:7–11. https://doi.org/10.1016/j.aca.2006.11.025

    Article  CAS  PubMed  Google Scholar 

  43. Heo JH, Kim K-I, Lee MH, Lee JH (2013) Stability of a gold nanoparticle-DNA system in seawater. J Nanosci Nanotechnol 13:7254–7258. https://doi.org/10.1166/jnn.2013.8101

    Article  CAS  PubMed  Google Scholar 

  44. Heo JH, Cho HH, Lee JW, Lee JH (2014) Achromatic–chromatic colorimetric sensors for on–off type detection of analytes. Analyst 139:6486–6493. https://doi.org/10.1039/C4AN01645A

    Article  CAS  PubMed  Google Scholar 

  45. Sabela M, Balme S, Bechelany M, Janot J-M, Bisetty K (2017) A review of gold and silver nanoparticle-based colorimetric sensing assays. Adv Eng Mater 19:1700270. https://doi.org/10.1002/adem.201700270

    Article  CAS  Google Scholar 

  46. Aldewachi H, Chalati T, Woodroofe MN, Bricklebank N, Sharrack B, Gardiner P (2018) Gold nanoparticle-based colorimetric biosensors. Nanoscale 10:18–33. https://doi.org/10.1039/C7NR06367A

    Article  CAS  Google Scholar 

  47. Cho HH, Kim SJ, Jafry AT, Lee B, Heo JH, Yoon S, Jeong SH, Kang S-I, Lee JH, Lee J (2019) A paper-based platform for long-term deposition of nanoparticles with exceptional redispersibility, stability, and functionality. Part Part Syst Charact 36:1800483. https://doi.org/10.1002/ppsc.201800483

    Article  Google Scholar 

  48. Chen S, Lin K, Tang C, Peng S, Chuang Y, Lin Y, Wang J, Lin C (2009) Optical detection of human papillomavirus type 16 and type 18 by sequence sandwich hybridization with oligonucleotide-functionalized au nanoparticles. IEEE Trans Nanobioscience 8:120–131. https://doi.org/10.1109/TNB.2008.2011733

    Article  PubMed  Google Scholar 

  49. Luo L, Nie K, Yang M-J, Wang M, Li J, Zhang C, Liu H-T, Ma X-J (2011) Visual detection of high-risk human papillomavirus genotypes 16, 18, 45, 52, and 58 by loop-mediated isothermal amplification with hydroxynaphthol blue dye. J Clin Microbiol 49:3545–3550. https://doi.org/10.1128/JCM.00930-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Azizah N, Hashim U, Gopinath SCB, Nadzirah S (2017) A direct detection of human papillomavirus 16 genomic DNA using gold nanoprobes. Int J Biol Macromol 94:571–575. https://doi.org/10.1016/j.ijbiomac.2016.10.060

    Article  CAS  PubMed  Google Scholar 

  51. Kumvongpin R, Jearanaikool P, Wilailuckana C, Sae-Ung N, Prasongdee P, Daduang S, Wongsena M, Boonsiri P, Kiatpathomchai W, Swangvaree SS et al. (2016) High sensitivity, loop-mediated isothermal amplification combined with colorimetric gold-nanoparticle probes for visual detection of high risk human papillomavirus genotypes 16 and 18. J Virol Methods 234:90–95. https://doi.org/10.1016/j.jviromet.2016.04.008

    Article  CAS  PubMed  Google Scholar 

  52. Yin K, Pandian V, Kadimisetty K, Zhang X, Ruiz C, Cooper K, Liu C (2020) Real-time colorimetric quantitative molecular detection of infectious diseases on smartphone-based diagnostic platform. Sci Rep 10:9009. https://doi.org/10.1038/s41598-020-65899-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yin K, Pandian V, Kadimisetty K, Ruiz C, Cooper K, You J, Liu C (2019) Synergistically enhanced colorimetric molecular detection using smart cup: a case for instrument-free HPV-associated cancer screening. Theranostics 9:2637–2645. https://doi.org/10.7150/thno.32224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Daskou M, Tsakogiannis D, Dimitriou TG, Amoutzias GD, Mossialos D, Kottaridi C, Gartzonika C, Markoulatos P (2019) WarmStart colorimetric LAMP for the specific and rapid detection of HPV16 and HPV18 DNA. J Virol Methods 270:87–94. https://doi.org/10.1016/j.jviromet.2019.04.023

    Article  CAS  PubMed  Google Scholar 

  55. Persano S, Valentini P, Kim JH, Pompa PP (2013) Colorimetric detection of human papilloma virus by double isothermal amplification. Chem Commun (Camb) 49:10605–10607. https://doi.org/10.1039/c3cc45459b

    Article  CAS  Google Scholar 

  56. Yuan Y, Ma Y, Luo L, Wang Q, Huang J, Liu J, Yang X, Wang K (2019) Ratiometric determination of human papillomavirus-16 DNA by using fluorescent DNA-templated silver nanoclusters and hairpin-blocked DNAzyme-assisted cascade amplification. Mikrochim Acta 186:613. https://doi.org/10.1007/s00604-019-3732-y

    Article  CAS  PubMed  Google Scholar 

  57. Ho NRY, Lim GS, Sundah NR, Lim D, Loh TP, Shao H (2018) Visual and modular detection of pathogen nucleic acids with enzyme-DNA molecular complexes. Nat Commun 9:3238. https://doi.org/10.1038/s41467-018-05733-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Teengam P, Siangproh W, Tuantranont A, Vilaivan T, Chailapakul O, Henry CS (2017) Multiplex paper-based colorimetric DNA sensor using Pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal Chem 89:5428–5435. https://doi.org/10.1021/acs.analchem.7b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bamrungsap S, Treetong A, Apiwat C, Wuttikhun T, Dharakul T (2015) SERS-fluorescence dual mode nanotags for cervical cancer detection using aptamers conjugated to gold-silver nanorods. Microchim Acta 183:249–256. https://doi.org/10.1007/s00604-015-1639-9

    Article  CAS  Google Scholar 

  60. Nie Y, Zhang X, Zhang Q, Liang Z, Ma Q, Su X (2020) A novel high efficient electrochemiluminescence sensor based on reductive Cu(I) particles catalyzed Zn-doped MoS2 QDs for HPV 16 DNA determination. Biosens Bioelectron 160:112217. https://doi.org/10.1016/j.bios.2020.112217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Ministry of Human Resource Development, Government of India for the financial support through Scheme for Promotion of Academic and Research Collaboration (SPARC) project “SPARC/2018-2019/P402/SL”. We also acknowledge the support received from the National Research Foundation (NRF) of Korea for the Basic Science Research Program funded by the Ministry of Education (NRF-2019R1A6A1A03033215). We are grateful to SASTRA Deemed University, India and SKKU, South Korea for providing infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Heon Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heo, J.H., Lee, J.W., Kannappan, S., Lee, J.H. (2021). Optical DNA Based Sensors for Cervical Cancers. In: Rayappan, J.B.B., Lee, J.H. (eds) Biomarkers and Biosensors for Cervical Cancer Diagnosis. Springer, Singapore. https://doi.org/10.1007/978-981-16-2586-2_6

Download citation

Publish with us

Policies and ethics