Skip to main content

Potential Biomarkers for Early Diagnosis of Cervical Cancer

  • Chapter
  • First Online:
Biomarkers and Biosensors for Cervical Cancer Diagnosis

Abstract

Biomarkers provide a platform to aid early detection, diagnosis, prognosis, and prediction of the disease. In the case of cervical cancer, the biomarkers primarily serve to identify the viral infection at a precancerous stage in order to aid in early intervention. They are broadly classified into molecular markers (nucleic acid based) and protein-based markers. Nucleic acid-based molecular markers are primarily based on the detection of HPV as the integration of HPV DNA into the host genome is a critical player in progression of the tumor. In addition, specific DNA loci in the human genome are also reported to have global and local epigenetic variation in the presence of HPV infection and thus act as suitable biomarkers. Less common but reliable nucleic acid-based markers include analysis of non-coding RNA such as miRNA, circular RNA (circRNA), and long non-coding RNA (lncRNA). The non-coding RNA and epigenetics-based screening platforms are currently at a nascent stage and thence further basic science research is essential to prove their clinical applicability. Protein-based biomarkers include differentially expressed host protein due to the influence of HPV oncoproteins. These biomarkers broadly fall into the categories of cell cycle regulators (KIF11, DTL), tumor suppressors (CBX7, KLK10), or proto-oncogenes (HBXIP, SMC4). Thence, an in-depth evaluation of the molecular and protein-based biomarkers will pave the way to affordable, simple, selective, and specific detection of cervical cancer at an early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaccarella S, Laversanne M, Ferlay J, Bray F (2017) Cervical cancer in Africa, Latin America and the Caribbean and Asia: regional inequalities and changing trends. Int J Cancer 141:1997–2001. https://doi.org/10.1002/ijc.30901

    Article  CAS  PubMed  Google Scholar 

  2. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95. https://doi.org/10.1067/mcp.2001.113989

    Article  Google Scholar 

  3. Cho HW, So KA, Lee JK, Hong JH (2015) Type-specific persistence or regression of human papillomavirus genotypes in women with cervical intraepithelial neoplasia 1: a prospective cohort study. Obstet Gynecol Sci 58:40–45. https://doi.org/10.5468/ogs.2015.58.1.40

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rositch AF, Koshiol J, Hudgens MG, Razzaghi H, Backes DM, Pimenta JM, Franco EL, Poole C, Smith JS (2013) Patterns of persistent genital human papillomavirus infection among women worldwide: a literature review and meta-analysis. Int J Cancer 133:1271–1285. https://doi.org/10.1002/ijc.27828

    Article  CAS  PubMed  Google Scholar 

  5. Zur Hausen H (2009) Papillomaviruses in the causation of human cancers — a brief historical account. Virology 384:260–265. https://doi.org/10.1016/j.virol.2008.11.046

    Article  CAS  PubMed  Google Scholar 

  6. Cubie HA, Norval M (1988) Synthetic oligonucleotide probes for the detection of human papilloma viruses by in situ hybridisation. J Virol Methods 20:239–249. https://doi.org/10.1016/0166-0934(88)90127-9

    Article  CAS  PubMed  Google Scholar 

  7. Cardillo MR, Marino R, Possi V (1991) Human papillomavirus DNA in cervical intraepithelial neoplasia detected by in situ hybridisation. Eur J Cancer Clin Oncol 27:193–197. https://doi.org/10.1016/0277-5379(91)90486-W

    Article  CAS  Google Scholar 

  8. Ibeanu OA (2011) Molecular pathogenesis of cervical cancer. Cancer Biol Ther 11:295–306. https://doi.org/10.4161/cbt.11.3.14686

    Article  CAS  PubMed  Google Scholar 

  9. Wu CT, Morris JR (2001) Genes, genetics, and epigenetics: a correspondence. Science 293:1103 LP–1101105. https://doi.org/10.1126/science.293.5532.1103

    Article  Google Scholar 

  10. Dupont C, Armant DR, Brenner CA (2009) Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med 27:351–357. https://doi.org/10.1055/s-0029-1237423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428. https://doi.org/10.1038/nrg816

    Article  CAS  PubMed  Google Scholar 

  12. Graham SV (2010) Human papillomavirus: gene expression, regulation and prospects for novel diagnostic methods and antivrial therapies. Future Microbiol Rev 5:1493–1506. https://doi.org/10.2217/FMB.10.107

    Article  CAS  Google Scholar 

  13. Bryant D, Onions T, Raybould R, Jones S, Tristram A, Hibbitts S, Fiander A, Powell N (2014) Increased methylation of human papillomavirus type 16 DNA correlates with viral integration in Vulval intraepithelial neoplasia. J Clin Virol 61:393–399. https://doi.org/10.1016/j.jcv.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  14. Szalmás A, Kónya J (2009) Epigenetic alterations in cervical carcinogenesis. Semin Cancer Biol 19:144–152. https://doi.org/10.1016/j.semcancer.2009.02.011

    Article  CAS  PubMed  Google Scholar 

  15. Chaiwongkot A, Niruthisard S, Kitkumthorn N, Bhattarakosol P (2017) Quantitative methylation analysis of human papillomavirus 16 L1 gene reveals potential biomarker for cervical cancer progression. Diagn Microbiol Infect Dis 89:265–270. https://doi.org/10.1016/j.diagmicrobio.2017.08.010

    Article  CAS  PubMed  Google Scholar 

  16. Rogeri CD, Silveira HCS, Causin RL, Villa LL, Stein MD, de Carvalho AC, Arantes LMRB, Scapulatempo-Neto C, Possati-Resende JC, Antoniazzi M et al (2018) Methylation of the hsa-miR-124, SOX1, TERT, and LMX1A genes as biomarkers for precursor lesions in cervical cancer. Gynecol Oncol 150:545–551. https://doi.org/10.1016/j.ygyno.2018.06.014

    Article  CAS  PubMed  Google Scholar 

  17. van den Helder R, van Trommel NE, van Splunter AP, Lissenberg-Witte BI, Bleeker MCG, Steenbergen RDM (2020) Methylation analysis in urine fractions for optimal CIN3 and cervical cancer detection. Papillomavirus Res 9:100193. https://doi.org/10.1016/j.pvr.2020.100193

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang X, Zhi Y, Li Y, Fan T, Li H, Du P, Cheng G, Li X (2019) Study on the relationship between methylation status of HPV 16 E2 binding sites and cervical lesions. Clin Chim Acta 493:98–103. https://doi.org/10.1016/j.cca.2019.02.027

    Article  CAS  PubMed  Google Scholar 

  19. Fiano V, Trevisan M, Fasanelli F, Grasso C, Marabese F, da Graça Bicalho M, de Carvalho NS, Maestri CA, Merletti F, Sacerdote C et al (2018) Methylation in host and viral genes as marker of aggressiveness in cervical lesions: analysis in 543 unscreened women. Gynecol Oncol 151:319–326. https://doi.org/10.1016/j.ygyno.2018.08.031

    Article  CAS  PubMed  Google Scholar 

  20. Song L, Liu S, Yao H, Zhang L, Li Y, Xu D, Li Q (2019) MiR-362-3p is downregulated by promoter methylation and independently predicts shorter OS of cervical squamous cell carcinoma. Biomed Pharmacother 115:108944. https://doi.org/10.1016/j.biopha.2019.108944

    Article  CAS  PubMed  Google Scholar 

  21. Dick S, Kremer WW, De Strooper LMA, Lissenberg-Witte BI, Steenbergen RDM, Meijer CJLM, Berkhof J, Heideman DAM (2019) Long-term CIN3+ risk of HPV positive women after triage with FAM19A4/miR124-2 methylation analysis. Gynecol Oncol 154:368–373. https://doi.org/10.1016/j.ygyno.2019.06.002

    Article  CAS  PubMed  Google Scholar 

  22. Varghese VK, Shukla V, Jishnu PV, Kabekkodu SP, Pandey D, Sharan K, Satyamoorthy K (2019) Characterizing methylation regulated miRNA in carcinoma of the human uterine cervix. Life Sci 232:116668. https://doi.org/10.1016/j.lfs.2019.116668

    Article  CAS  PubMed  Google Scholar 

  23. Wang R, Li Y, Du P, Zhang X, Li X, Cheng G (2019) Hypomethylation of the lncRNA SOX21-AS1 has clinical prognostic value in cervical cancer. Life Sci:233. https://doi.org/10.1016/j.lfs.2019.116708

  24. Lorincz AT (2011) The promise and the problems of epigenetics biomarkers in cancer. Expert Opin Med Diagn 5:375–379. https://doi.org/10.1517/17530059.2011.590129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:402. https://doi.org/10.3389/fendo.2018.00402

    Article  Google Scholar 

  26. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108:5003–5008. https://doi.org/10.1073/pnas.1019055108

    Article  PubMed  PubMed Central  Google Scholar 

  27. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM, Voinea SC (2020) miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cell 9:276. https://doi.org/10.3390/cells9020276

    Article  CAS  Google Scholar 

  28. Liu X (2018) Up-regulation of miR-20a by HPV16 E6 exerts growth-promoting effects by targeting PDCD6 in cervical carcinoma cells. Biomed Pharmacother 102:996–1002. https://doi.org/10.1016/j.biopha.2018.03.154

    Article  CAS  PubMed  Google Scholar 

  29. Zhu Y, Han Y, Tian T, Su P, Jin G, Chen J, Cao Y (2018) MiR-21-5p, miR-34a, and human telomerase RNA component as surrogate markers for cervical cancer progression. Pathol Res Pract 214:374–379. https://doi.org/10.1016/j.prp.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  30. Chevillet JR, Lee I, Briggs HA, He Y, Wang K (2014) Issues and prospects of microRNA-based biomarkers in blood and other body fluids. Molecules 19:6080–6105. https://doi.org/10.3390/molecules19056080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang J, Liu Y, Wang X, Li J, Wei J, Wang Y, Song W, Zhang Z (1864) MiR-1266 promotes cell proliferation, migration and invasion in cervical cancer by targeting DAB2IP. Biochim Biophys Acta Mol basis Dis 2018:3623–3630. https://doi.org/10.1016/j.bbadis.2018.09.028

    Article  CAS  Google Scholar 

  32. Shukla V, Varghese VK, Kabekkodu SP, Mallya S, Chakrabarty S, Jayaram P, Pandey D, Banerjee S, Sharan K, Satyamoorthy K (2019) Enumeration of deregulated miRNAs in liquid and tissue biopsies of cervical cancer. Gynecol Oncol 155:135–143. https://doi.org/10.1016/j.ygyno.2019.08.012

    Article  CAS  PubMed  Google Scholar 

  33. Yang L, Liu L, Zhang X, Zhu Y, Li L, Wang B, Liu Y, Ren C (2020) miR-96 enhances the proliferation of cervical cancer cells by targeting FOXO1. Pathol Res Pract 216:152854. https://doi.org/10.1016/j.prp.2020.152854

    Article  CAS  PubMed  Google Scholar 

  34. Zhang L, Liu F, Fu Y, Chen X, Zhang D (2020) MiR-520d-5p functions as a tumor-suppressor gene in cervical cancer through targeting PTK2. Life Sci 254:117558. https://doi.org/10.1016/j.lfs.2020.117558

    Article  CAS  PubMed  Google Scholar 

  35. Yang C, Ren J, Li B, Zhang D, Ma C, Cheng C, Sun Y, Fu L, Shi X (2018) Identification of clinical tumor stages related mRNAs and miRNAs in cervical squamous cell carcinoma. Pathol Res Pract 214:1638–1647. https://doi.org/10.1016/j.prp.2018.07.035

    Article  CAS  PubMed  Google Scholar 

  36. Zhang XY, Ma H, Li J, Lu XR, Li JQ, Yuan N, Zhang ZL, Xue XY (2020) Functional implications of miR-145/RCAN3 axis in the progression of cervical cancer. Reprod Biol 20:140–146. https://doi.org/10.1016/j.repbio.2020.04.001

    Article  PubMed  Google Scholar 

  37. Lin CL, Ying TH, Yang SF, Wang SW, Cheng SP, Lee JJ, Hsieh YH (2020) Transcriptional suppression of miR-7 by MTA2 induces Sp1-mediated KLK10 expression and metastasis of cervical cancer. Mol Ther Nucleic Acids 20:699–710. https://doi.org/10.1016/j.omtn.2020.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yuan Y, Shi X, Li B, Peng M, Zhu T, Lv G, Liu L, Jin H, Li L, Qin D (2020) Integrated analysis of key microRNAs /TFs /mRNAs/ in HPV-positive cervical cancer based on microRNA sequencing and bioinformatics analysis. Pathol Res Pract 216:152952. https://doi.org/10.1016/j.prp.2020.152952

    Article  CAS  PubMed  Google Scholar 

  39. Jihad NA, Naif HM (2020) Evaluation of microRNA-20, −21 and −143 expression in human papilloma virus induced premalignant and malignant cervical lesions. Gene Rep 20:100702. https://doi.org/10.1016/j.genrep.2020.100702

    Article  Google Scholar 

  40. Peng X, Zhang Y, Gao J, Cai C (2020) MiR-1258 promotes the apoptosis of cervical cancer cells by regulating the E2F1/P53 signaling pathway. Exp Mol Pathol 114:104368. https://doi.org/10.1016/j.yexmp.2020.104368

    Article  CAS  PubMed  Google Scholar 

  41. Sommerova L, Anton M, Bouchalova P, Jasickova H, Rak V, Jandakova E, Selingerova I, Bartosik M, Vojtesek B, Hrstka R (2019) The role of miR-409-3p in regulation of HPV16/18-E6 mRNA in human cervical high-grade squamous intraepithelial lesions. Antivir Res 163:185–192. https://doi.org/10.1016/j.antiviral.2019.01.019

    Article  CAS  PubMed  Google Scholar 

  42. Zhou Y, An Q, Xia Guo R, Huan Qiao Y, Xia Li L, Yan Zhang X, Zhao X (2017) Lan miR424-5p functions as an anti-oncogene in cervical cancer cell growth by targeting KDM5B via the notch signaling pathway. Life Sci 171:9–15. https://doi.org/10.1016/j.lfs.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  43. Xu L, Xu Q, Li X, Zhang X (2017) MicroRNA-21 regulates the proliferation and apoptosis of cervical cancer cells via tumor necrosis factor-α. Mol Med Rep 16:4659–4663. https://doi.org/10.3892/mmr.2017.7143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma J, Zhang F, Sun P (2020) miR-140-3p impedes the proliferation of human cervical cancer cells by targeting RRM2 to induce cell-cycle arrest and early apoptosis. Bioorganic Med Chem 28:115283. https://doi.org/10.1016/j.bmc.2019.115283

    Article  CAS  Google Scholar 

  45. Huang Y, Huang H, Li M, Zhang X, Liu Y, Wang Y (2017) MicroRNA-374c-5p regulates the invasion and migration of cervical cancer by acting on the Foxc1/snail pathway. Biomed Pharmacother 94:1038–1047. https://doi.org/10.1016/j.biopha.2017.07.150

    Article  CAS  PubMed  Google Scholar 

  46. Chen J, Deng Y, Ao L, Song Y, Xu Y, Wang CC, Choy KW, Tony Chung KH, Du Q, Sui Y et al (2019) The high-risk HPV oncogene E7 upregulates miR-182 expression through the TGF-β/Smad pathway in cervical cancer. Cancer Lett 460:75–85. https://doi.org/10.1016/j.canlet.2019.06.015

    Article  CAS  PubMed  Google Scholar 

  47. Cheng L, Shi X, Huo D, Zhao Y, Zhang H (2019) MiR-449b-5p regulates cell proliferation, migration and radioresistance in cervical cancer by interacting with the transcription suppressor FOXP1. Eur J Pharmacol 856:172399. https://doi.org/10.1016/j.ejphar.2019.05.028

    Article  CAS  PubMed  Google Scholar 

  48. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  CAS  PubMed  Google Scholar 

  49. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, Kjems J (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30:4414–4422. https://doi.org/10.1038/emboj.2011.359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388. https://doi.org/10.1038/nature11993

    Article  CAS  PubMed  Google Scholar 

  52. Rong X, Gao W, Yang X, Guo J (2019) Downregulation of hsa_circ_0007534 restricts the proliferation and invasion of cervical cancer through regulating miR-498/BMI-1 signaling. Life Sci 235:116785. https://doi.org/10.1016/j.lfs.2019.116785

    Article  CAS  PubMed  Google Scholar 

  53. Huang H, Chen YF, Du X, Zhang C (2020) Identification and characterization of tumorigenic circular RNAs in cervical cancer. Cell Signal 73:109669. https://doi.org/10.1016/j.cellsig.2020.109669

    Article  CAS  PubMed  Google Scholar 

  54. Huang P, Qi B, Yao H, Zhang L, Li Y, Li Q (2020) Circular RNA cSMARCA5 regulates the progression of cervical cancer by acting as a microRNA-432 sponge. Mol Med Rep 21:1217–1223. https://doi.org/10.3892/mmr.2020.10910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ji F, Du R, Chen T, Zhang M, Zhu Y, Luo X, Ding Y (2020) Circular RNA circSLC26A4 accelerates cervical cancer progression via miR-1287-5p/HOXA7 Axis. Mol Ther Nucleic Acids 19:413–420. https://doi.org/10.1016/j.omtn.2019.11.032

    Article  CAS  PubMed  Google Scholar 

  56. Song T, Xu A, Zhang Z, Gao F, Zhao L, Chen X, Gao J, Kong X (2019) CircRNA hsa_circRNA_101996 increases cervical cancer proliferation and invasion through activating TPX2 expression by restraining miR-8075. J Cell Physiol 234:14296–14305. https://doi.org/10.1002/jcp.28128

    Article  CAS  PubMed  Google Scholar 

  57. Shao S, Wang C, Wang S, Zhang H, Zhang Y (2020) Hsa_circ_0075341 is up-regulated and exerts oncogenic properties by sponging miR-149-5p in cervical cancer. Biomed Pharmacother 121:109582. https://doi.org/10.1016/j.biopha.2019.109582

    Article  CAS  PubMed  Google Scholar 

  58. Ou R, Lv J, Zhang Q, Lin F, Zhu L, Huang F, Li X, Li T, Zhao L, Ren Y et al (2020) circAMOTL1 motivates AMOTL1 expression to facilitate cervical cancer growth. Mol Ther Nucleic Acids 19:50–60. https://doi.org/10.1016/j.omtn.2019.09.022

    Article  CAS  PubMed  Google Scholar 

  59. Ma HB, Yao YN, Yu JJ, Chen XX, Li HF (2018) Extensive profiling of circular RNAs and the potential regulatory role of circRNA-000284 in cell proliferation and invasion of cervical cancer via sponging miR-506. Am J Transl Res 10:592–604

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen M, Ai G, Zhou J, Mao W, Li H, Guo J (2019) circMTO1 promotes tumorigenesis and chemoresistance of cervical cancer via regulating miR-6893. Biomed Pharmacother 117:109064. https://doi.org/10.1016/j.biopha.2019.109064

    Article  CAS  PubMed  Google Scholar 

  61. Ma H, Tian T, Liu X, Xia M, Chen C, Mai L, Xie S, Yu L (2019) Upregulated circ_0005576 facilitates cervical cancer progression via the miR-153/KIF20A axis. Biomed Pharmacother 118. https://doi.org/10.1016/j.biopha.2019.109311

  62. Bolós V, Peinado H, Pérez-Moreno MA, Fraga MF, Esteller M, Cano A (2003) The transcription factor slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with snail and E47 repressors. J Cell Sci 116:499–511

    Article  PubMed  Google Scholar 

  63. Gasnereau I, Boissan M, Margall-ducos G, Couchy G, Wendum D, Bourgain-guglielmetti F, Desdouets C, Lacombe M (2012) KIF20A mRNA and its product MKlp2 are increased during hepatocyte proliferation and Hepatocarcinogenesis. Am J Pathol 180:131–140. https://doi.org/10.1016/j.ajpath.2011.09.040

    Article  CAS  PubMed  Google Scholar 

  64. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci 73:3852 LP–3853856. https://doi.org/10.1073/pnas.73.11.3852

    Article  Google Scholar 

  65. Mattick JS (2001) Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2:986–991. https://doi.org/10.1093/embo-reports/kve230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang H, Chen Z, Wang X, Huang Z, He Z, Chen Y (2013) Long non-coding RNA: a new player in cancer. J Hematol Oncol 6:37. https://doi.org/10.1186/1756-8722-6-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cheetham SW, Gruhl F, Mattick JS, Dinger ME (2013) Long noncoding RNAs and the genetics of cancer. Br J Cancer 108:2419–2425. https://doi.org/10.1038/bjc.2013.233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T, Zeller U, Baker JC, Grützner F, Kaessmann H (2014) The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505:635–640. https://doi.org/10.1038/nature12943

    Article  CAS  PubMed  Google Scholar 

  69. Shi T, Gao G, Cao Y (2016) Long noncoding RNAs as novel biomarkers have a promising future in cancer diagnostics. Dis Markers 2016:9085195. https://doi.org/10.1155/2016/9085195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Roychowdhury A, Samadder S, Das P, Mazumder DI, Chatterjee A, Addya S, Mondal R, Roy A, Roychoudhury S, Panda CK (2020) Deregulation of H19 is associated with cervical carcinoma. Genomics 112:961–970. https://doi.org/10.1016/j.ygeno.2019.06.012

    Article  CAS  PubMed  Google Scholar 

  71. Guo Q, Li L, Bo Q, Chen L, Sun L, Shi H (2020) Long noncoding RNA PITPNA-AS1 promotes cervical cancer progression through regulating the cell cycle and apoptosis by targeting the miR-876-5p/c-MET axis. Biomed Pharmacother 128:1–10. https://doi.org/10.1016/j.biopha.2020.110072

    Article  CAS  Google Scholar 

  72. Hu P, Zhou G, Zhang X, Song G, Zhan L, Cao Y (2019) Long non-coding RNA Linc00483 accelerated tumorigenesis of cervical cancer by regulating miR-508-3p/RGS17 axis. Life Sci 234:116789. https://doi.org/10.1016/j.lfs.2019.116789

    Article  CAS  PubMed  Google Scholar 

  73. Dong M, Dong Z, Zhu X, Zhang Y, Song L (2019) Long non-coding RNA MIR205HG regulates KRT17 and tumor processes in cervical cancer via interaction with SRSF1. Exp Mol Pathol 111:104322. https://doi.org/10.1016/j.yexmp.2019.104322

    Article  CAS  PubMed  Google Scholar 

  74. Song W, Wang J, Liu H, Zhu C, Xu F, Qian L, Shen Z, Zhu J, Yin S, Qin J et al (2019) Effects of LncRNA Lnc-LIF-AS on cell proliferation, migration and invasion in a human cervical cancer cell line. Cytokine 120:165–175. https://doi.org/10.1016/j.cyto.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  75. Duan H, Li X, Chen Y, Wang Y, Li Z (2019) LncRNA RHPN1-AS1 promoted cell proliferation, invasion and migration in cervical cancer via the modulation of miR-299–3p/FGF2 axis. Life Sci 239:116856. https://doi.org/10.1016/j.lfs.2019.116856

    Article  CAS  PubMed  Google Scholar 

  76. Zhang J, Zhou M, Zhao X, Wang G, Li J (2020) Long noncoding RNA LINC00173 is downregulated in cervical cancer and inhibits cell proliferation and invasion by modulating the miR-182-5p/FBXW7 axis. Pathol Res Pract 216:152994. https://doi.org/10.1016/j.prp.2020.152994

    Article  CAS  PubMed  Google Scholar 

  77. Song K-H, Cho H, Kim S, Lee H-J, Oh SJ, Woo SR, Hong S-O, Jang HS, Noh KH, Choi CH et al (2017) API5 confers cancer stem cell-like properties through the FGF2-NANOG axis. Oncogenesis 6:e285–e285. https://doi.org/10.1038/oncsis.2016.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ou L, Wang D, Zhang H, Yu Q, Hua F (2018) Decreased expression of miR-138-5p by lncRNA H19 in cervical cancer promotes tumor proliferation. Oncol Res 26:401–410. https://doi.org/10.3727/096504017X15017209042610

    Article  PubMed  PubMed Central  Google Scholar 

  79. Raveh E, Matouk IJ, Gilon M, Hochberg A (2015) The H19 long non-coding RNA in cancer initiation, progression and metastasis - a proposed unifying theory. Mol Cancer 14:184. https://doi.org/10.1186/s12943-015-0458-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yeh M, Oh CS, Yoo JY, Kaur B, Lee TJ (2019) Pivotal role of microRNA-138 in human cancers. Am J Cancer Res 9:1118–1126

    CAS  PubMed  PubMed Central  Google Scholar 

  81. De Freitas AC, Coimbra EC, da Leitão MCG (2014) Molecular targets of HPV oncoproteins: potential biomarkers for cervical carcinogenesis. Biochim Biophys Acta - Rev Cancer 1845:91–103. https://doi.org/10.1016/j.bbcan.2013.12.004

    Article  CAS  Google Scholar 

  82. Li N, Wang Y, Che S, Yang Y, Piao J, Liu S, Lin Z (2017) HBXIP over expression as an independent biomarker for cervical cancer. Exp Mol Pathol 102:133–137. https://doi.org/10.1016/j.yexmp.2017.01.009

    Article  CAS  PubMed  Google Scholar 

  83. Wu H, Song S, Yan A, Guo X, Chang L, Xu L, Hu L, Kuang M, Liu B, He D et al (2020) RACK1 promotes the invasive activities and lymph node metastasis of cervical cancer via galectin-1. Cancer Lett 469:287–300. https://doi.org/10.1016/j.canlet.2019.11.002

    Article  CAS  PubMed  Google Scholar 

  84. Zhan F, Zhong Y, Qin Y, Li L, Wu W, Yao M (2020) SND1 facilitates the invasion and migration of cervical cancer cells by Smurf1-mediated degradation of FOXA2. Exp Cell Res 388:111809. https://doi.org/10.1016/j.yexcr.2019.111809

    Article  CAS  PubMed  Google Scholar 

  85. Li R, Yan Q, Tian P, Wang Y, Wang J, Tao N, Ning L, Lin X, Ding L, Liu J et al (2019) CBX7 inhibits cell growth and motility and induces apoptosis in cervical cancer cells. Mol Ther - Oncolytics 15:108–116. https://doi.org/10.1016/j.omto.2019.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jin Y, Kim SC, Kim HJ, Ju W, Kim YH, Kim HJ (2018) Use of protein-based biomarkers of exfoliated cervical cells for primary screening of cervical cancer. Arch Pharm Res 41:438–449. https://doi.org/10.1007/s12272-018-1015-5

    Article  CAS  PubMed  Google Scholar 

  87. Guo S, Yang B, Liu H, Li Y, Li S, Ma L, Liu J, Guo W (2017) Serum expression level of squamous cell carcinoma antigen, highly sensitive C-reactive protein, and CA-125 as potential biomarkers for recurrence of cervical cancer. J Cancer Res Ther 13:689–692. https://doi.org/10.4103/jcrt.JCRT_414_17

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Human Resource Development, Government of India for the financial support through Scheme for Promotion of Academic and Research Collaboration (SPARC) project “SPARC/2018-2019/P402/SL” We also acknowledge the support received from the National Research Foundation (NRF) of Korea for the Basic Science Research Program funded by the Ministry of Education (NRF-2019R1A6A1A03033215). We are grateful to SASTRA Deemed University, India and SKKU, South Korea for providing infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noel Nesakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kannappan, S., Lee, J.H., Lakshmanakumar, M., Rayappan, J.B.B., Nesakumar, N. (2021). Potential Biomarkers for Early Diagnosis of Cervical Cancer. In: Rayappan, J.B.B., Lee, J.H. (eds) Biomarkers and Biosensors for Cervical Cancer Diagnosis. Springer, Singapore. https://doi.org/10.1007/978-981-16-2586-2_3

Download citation

Publish with us

Policies and ethics