Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 227 Accesses

Abstract

Although the use of RMs is considered an effective approach to reduce the large overpotential in lithium–oxygen batteries, the mobility of RMs triggering the detrimental shuttle effect hinders the sufficient enhancement of the cyclability. In this part, the research to address shuttle effect by anchoring the RMs in polymer form and simultaneously maintaining charge-carrying property will be introduced. Exploting PTMA (2,2,6,6–tetramethyl–1–piperidinyloxy–4–yl methacrylate) as a model polymer system, it is observed that PTMA has the capability to function as a stationary RM, while preserving the redox activity. Due to the prevention of shuttle effect, the consumption of oxidized RMs or lithium anode degradation was significantly suppressed, and at the same time, the efficiency of Li2O2 decomposition by RMs remains remarkably stable, resulting in the remarkable improvement of lithium–oxygen cell performance.

The essence of this chapter has been published in Angewandte Chemie. Reproduced with permission from [Ko, Y. et al., Angew. Chem. Int. Ed. 2020, 59, 5376–5380] Copyright (2020) WILEY-VCH

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2011) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19

    Article  CAS  Google Scholar 

  2. Lim H-D, Lee B, Bae Y, Park H, Ko Y, Kim H et al (2017) Reaction chemistry in rechargeable Li–O2 batteries. Chem Soc Rev 46(10):2873–2888

    Article  CAS  Google Scholar 

  3. Ko Y, Park H, Kim B, Kim JS, Kang K (2019) Redox mediators: a solution for advanced lithium–oxygen batteries. Trends Chem 1(3):349–360

    Article  CAS  Google Scholar 

  4. Woo H, Kang J, Kim J, Kim C, Nam S, Park B (2016) Development of carbon-based cathodes for Li-air batteries: present and future. Electron Mater Lett 12(5):551–567

    Article  CAS  Google Scholar 

  5. Girishkumar G, McCloskey B, Luntz A, Swanson S, Wilcke W (2010) Lithium—air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203

    Article  CAS  Google Scholar 

  6. Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R et al (2011) A critical review of Li/air batteries. J Electrochem Soc 159(2):R1–R30

    Article  CAS  Google Scholar 

  7. Lu Y-C, Xu Z, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) Platinum—gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium—air batteries. J Am Chem Soc 132(35):12170–12171

    Article  CAS  Google Scholar 

  8. Lu Y-C, Gasteiger HA, Shao-Horn Y (2011) Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. J Am Chem Soc 133(47):19048–19051

    Article  CAS  Google Scholar 

  9. Ma S, Wu Y, Wang J, Zhang Y, Zhang Y, Yan X et al (2015) Reversibility of noble metal-catalyzed aprotic Li-O2 batteries. Nano Lett 15(12):8084–8090

    Article  CAS  Google Scholar 

  10. Lim H-D, Song H, Gwon H, Park K-Y, Kim J, Bae Y et al (2013) A new catalyst-embedded hierarchical air electrode for high-performance Li–O2 batteries. Energy Environ Sci 6(12):3570–3575

    Article  CAS  Google Scholar 

  11. Débart A, Paterson AJ, Bao J, Bruce PG (2008) α‐MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Ed 47(24):4521–4524

    Article  CAS  Google Scholar 

  12. Lee YJ, Kim DH, Kang T-G, Ko Y, Kang K, Lee YJ (2017) Bifunctional MnO2-coated Co3O4 hetero-structured catalysts for reversible Li-O2 batteries. Chem Mater 29(24):10542–10550

    Article  CAS  Google Scholar 

  13. McCloskey BD, Scheffler R, Speidel A, Bethune DS, Shelby RM, Luntz AC (2011) On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries. J Am Chem Soc 133(45):18038–18041

    Article  CAS  Google Scholar 

  14. Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG (2013) Charging a Li–O2 battery using a redox mediator. Nat Chem 5:489

    Article  CAS  Google Scholar 

  15. Lim H-D, Lee B, Zheng Y, Hong J, Kim J, Gwon H et al (2016) Rational design of redox mediators for advanced Li–O2 batteries. Nat Energy 1:16066

    Article  CAS  Google Scholar 

  16. Ko Y, Park H, Kim B, Kim JS, Kang K (2019) Redox mediators: a solution for advanced lithium-oxygen batteries. Trends Chem 1:349–360

    Article  CAS  Google Scholar 

  17. Bergner BJ, Schürmann A, Peppler K, Garsuch A, Janek J (2014) TEMPO: A mobile catalyst for rechargeable Li-O2 batteries. J Am Chem Soc 136(42):15054–15064

    Article  CAS  Google Scholar 

  18. Ko Y, Park H, Kim J, Lim HD, Lee B, Kwon G et al (2019) Biological redox mediation in electron transport chain of bacteria for oxygen reduction reaction catalysts in lithium-oxygen batteries. Adv Funct Mater 29(5):1805623

    Article  CAS  Google Scholar 

  19. Lim H-D, Lee B, Bae Y, Park H, Ko Y, Kim H et al (2017) Reaction chemistry in rechargeable Li–O2 batteries. Chem Soc Rev 46(10):2873–2888

    Google Scholar 

  20. Lim HD, Song H, Kim J, Gwon H, Bae Y, Park KY et al (2014) Superior rechargeability and efficiency of lithium–oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew Chem Int Ed 53(15):3926–3931

    Article  CAS  Google Scholar 

  21. Kwak W-J, Hirshberg D, Sharon D, Afri M, Frimer AA, Jung H-G et al (2016) Li–O2 cells with LiBr as an electrolyte and a redox mediator. Energy Environ Sci 9(7):2334–2345

    Article  CAS  Google Scholar 

  22. Zhang J, Sun B, Zhao Y, Kretschmer K, Wang G (2017) Modified tetrathiafulvalene as an organic conductor for improving performances of Li–O2 batteries. Angew Chem Int Ed 56(29):8505–8509

    Article  CAS  Google Scholar 

  23. Fang R, Zhao S, Sun Z, Wang DW, Cheng HM, Li F (2017) More reliable lithium-sulfur batteries: status, solutions and prospects. Adv Mater 29(48):1606823

    Article  CAS  Google Scholar 

  24. Lee DJ, Lee H, Kim Y-J, Park J-K, Kim H-T (2015) Sustainable redox mediation for lithium-oxygen batteries by a composite protective layer on the lithium-metal anode. Adv Mater 28(5):857–863

    Article  CAS  Google Scholar 

  25. Bergner BJ, Busche MR, Pinedo R, Berkes BB, Schröder D, Janek J (2016) How to improve capacity and cycling stability for next generation Li–O2 batteries: approach with a solid electrolyte and elevated redox mediator concentrations. ACS Appl Mater Interfaces 8(12):7756–7765

    Article  CAS  Google Scholar 

  26. Qiao Y, He Y, Wu S, Jiang K, Li X, Guo S et al (2018) MOF-based separator in an Li–O2 battery: an effective strategy to restrain the shuttling of dual redox mediators. ACS Energy Lett 3(2):463–468

    Article  CAS  Google Scholar 

  27. Gao X, Chen Y, Johnson LR, Jovanov ZP, Bruce PG (2017) A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode. Nat Energy 2(9):17118

    Article  CAS  Google Scholar 

  28. Kentaro N, Kenichi O, Hiroyuki N (2011) Organic radical battery approaching practical use. Chem Lett 40(3):222–227

    Article  CAS  Google Scholar 

  29. Wang S, Li F, Easley AD, Lutkenhaus JL (2019) Real-time insight into the doping mechanism of redox-active organic radical polymers. Nat Mater 18(1):69

    Article  CAS  Google Scholar 

  30. Bugnon L, Morton CJ, Novak P, Vetter J, Nesvadba P (2007) Synthesis of poly (4-methacryloyloxy-TEMPO) via group-transfer polymerization and its evaluation in organic radical battery. Chem Mater 19(11):2910–2914

    Article  CAS  Google Scholar 

  31. Kurosaki T, Lee KW, Okawara M (1972) Polymers having stable radicals. I. Synthesis of nitroxyl polymers from 4‐methacryloyl derivatives of 2, 2, 6, 6‐tetramethylpiperidine. J Polym Sci Part A: Polym Chem 10(11):3295–3310

    Article  CAS  Google Scholar 

  32. Guo W, Yin Y-X, Xin S, Guo Y-G, Wan L-J (2012) Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy Environ Sci 5(1):5221–5225

    Article  CAS  Google Scholar 

  33. Zhang J, Sun B, Xie X, Zhao Y, Wang G (2016) A bifunctional organic redox catalyst for rechargeable lithium-oxygen batteries with enhanced performances. Adv Sci 3(4):1500285

    Article  CAS  Google Scholar 

  34. McCloskey BD, Valery A, Luntz AC, Gowda SR, Wallraff GM, Garcia JM et al (2013) Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries. J Phys Chem Lett 4(17):2989–2993

    Article  CAS  Google Scholar 

  35. Yin W, Grimaud A, Azcarate I, Yang C, Tarascon J-M (2018) Electrochemical reduction of CO2 mediated by quinone derivatives: implication for Li–CO2 battery. J Phys Chem C 122(12):6546–6554

    Article  CAS  Google Scholar 

  36. Nakahara K, Iwasa S, Satoh M, Morioka Y, Iriyama J, Suguro M et al (2002) Rechargeable batteries with organic radical cathodes. Chem Phys Lett 359(5):351–354

    Article  CAS  Google Scholar 

  37. Wong RA, Yang C, Dutta A, Minho O, Hong M, Thomas ML et al (2018) Critically examining the role of nanocatalysts in Li–O2 batteries: viability toward suppression of recharge overpotential, rechargeability, and cyclability. ACS Energy Lett 3(3):592–597

    Article  CAS  Google Scholar 

  38. Bae Y, Ko DH, Lee S, Lim HD, Kim YJ, Shim HS et al (2018) Enhanced stability of coated carbon electrode for Li-O2 batteries and its limitations. Adv Energy Mater 8(16):1702661

    Article  CAS  Google Scholar 

  39. Bae Y, Yun YS, Lim H-D, Lee H, Kim Y-J, Kim J et al (2016) Tuning the carbon crystallinity for highly stable Li–O2 batteries. Chem Mater 28(22):8160–8169

    Article  CAS  Google Scholar 

  40. Kahn O (1993) Molecular magnetism, vol 393. VCH Publishers, USA

    Google Scholar 

  41. Nishide H, Iwasa S, Pu Y-J, Suga T, Nakahara K, Satoh M (2004) Organic radical battery: nitroxide polymers as a cathode-active material. Electrochim Acta 50(2–3):827–831

    Article  CAS  Google Scholar 

  42. Oyaizu K, Nishide H (2009) Radical polymers for organic electronic devices: a radical departure from conjugated polymers? Adv Mater 21(22):2339–2344

    Article  CAS  Google Scholar 

  43. Suguro M, Iwasa S, Kusachi Y, Morioka Y, Nakahara K (2007) Cationic polymerization of poly (vinyl ether) bearing a TEMPO radical: a new cathode-active material for organic radical batteries. Macromol Rapid Commun 28(18–19):1929–1933

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngmin Ko .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ko, Y. (2021). Addressing Shuttle Phenomena: Anchored Redox Mediator for Sustainable Redox Mediation. In: Development of Redox Mediators for High-Energy-Density and High-Efficiency Lithium-Oxygen Batteries. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-16-2532-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2532-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2531-2

  • Online ISBN: 978-981-16-2532-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics