Skip to main content

Convergent Total Synthesis of (+)-Cotylenin A

  • Chapter
  • First Online:
Middle Molecular Strategy

Abstract

Herein, the convergent total synthesis of (+)-cotylenin A is described. A retrosynthetic analysis of cotylenin A generated three fragments—A- and C-ring fragments, and a sugar moiety fragment. The A-ring fragment was prepared via a catalytic asymmetric intramolecular cyclopropanation developed in our laboratory, while the C-ring fragment was prepared via the modified acyl radical cyclization of a known chiral compound. The two fragments were successfully assembled by the Utimoto coupling reaction, while the B-ring, a carbocyclic eight-membered ring, was efficiently constructed by palladium-mediated cyclization, which was discovered during our synthesis of taxol. All hydroxy groups in the 5-8-5 tricyclic scaffold were stereoselectively introduced. Moreover, a new modified reducing reagent, Me4NBH(O2CiPr)3, was developed during the course of this study. The sugar moiety fragment was successfully prepared for the first time via the consecutive carbon–oxygen bond-forming reactions and was terminated by an epoxide opening reaction. Finally, the first enantioselective total synthesis of cotylenin A was successfully accomplished in a highly convergent manner via glycosylation using Wan’s protocol. Moreover, this is the first report to investigate the specific rotation of cotylenin A through the total synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sassa T, Tojyo T, Munakata K (1970) Isolation of a new plant growth substance with cytokinin-like activity. Nature 227:379. https://doi.org/10.1038/227379a0

    Article  CAS  PubMed  Google Scholar 

  2. Sassa T (1971) Cotylenins, leaf growth substances produced by a fungus, part I. Isolation and characterization of cotylenins A and B. Agric Biol Chem 35:1415–1418. https://doi.org/10.1080/00021369.1971.10860078

    Article  CAS  Google Scholar 

  3. Sassa T, Ooi T, Nukina M, Kato N (1998) Structural confirmation of cotylenin A, a novel fusicoccane-diterpene glycoside with potent plant growth-regulating activity from cladosporium fungus sp. 501-7W. Biosci Biotechnol Biochem 62:1815–1819. https://doi.org/10.1271/bbb.62.1815

    Article  CAS  PubMed  Google Scholar 

  4. Ballio A, Brufani M, Casinovi CG, Cerrini S, Fedeli W, Pellicciari R, Santurbano B, Vaciago A (1968) The structure of fusicoccin A. Experientia 24:631–635. https://doi.org/10.1007/BF02153818

    Article  CAS  PubMed  Google Scholar 

  5. Asahi K, Honma Y, Hazeki K, Sassa T, Kubohara Y, Sakurai A, Takahashi N (1997) Cotylenin A, a plant-growth regulator, induces the differentiation in murine and human myeloid leukemia cells. Biochem Biophys Res Commun 238:758–763. https://doi.org/10.1006/bbrc.1997.7385

    Article  CAS  PubMed  Google Scholar 

  6. Honma Y (2002) Cotylenin A—a plant growth regulator as a differentiation-inducing agent against myeloid leukemia. Leuk Lymphoma 43:1169–1178. https://doi.org/10.1080/10428190290026222

    Article  CAS  PubMed  Google Scholar 

  7. Honma Y, Ishii Y, Yamamoto-Yamaguchi Y, Sassa T, Asahi K (2003) Cotylenin A, a differentiation-inducing agent, and IFN-α cooperatively induce apoptosis and have an antitumor effect on human non-small cell lung carcinoma cells in nude mice. Cancer Res 63:3659–3666

    CAS  PubMed  Google Scholar 

  8. Honma Y, Kasukabe T, Yamori T, Kato N, Sassa T (2005) Antitumor effect of cotylenin A plus interferon-α: possible therapeutic agents against ovary carcinoma. Gynecol Oncol 99:680–688. https://doi.org/10.1016/j.ygyno.2005.07.015

    Article  CAS  PubMed  Google Scholar 

  9. Matsunawa W, Ishii Y, Kasukabe T, Tomoyasu S, Ota H, Honma Y (2006) Cotylenin A-induced differentiation is independent of the transforming growth factor-β signaling system in human myeloid leukemia HL-60 cells. Leuk Lymphoma 47:733–740. https://doi.org/10.1080/10428190500375839

    Article  CAS  PubMed  Google Scholar 

  10. Molzan M, Kasper S, Roeglin L, Skwarczynska M, Sassa T, Inoue T, Breitenbuecher F, Ohkanda J, Kato N, Schuler M, Ottmann C (2013) Stabilization of physical RAF/14-3-3 interaction by cotylenin A as treatment strategy for RAS mutant cancers. ACS Chem Biol 8:1869–1875. https://doi.org/10.1021/cb4003464

    Article  CAS  PubMed  Google Scholar 

  11. Ottmann C, Weyand M, Sassa T, Inoue T, Kato N, Wittinghofer A, Oecking C (2009) A structural rationale for selective stabilization of anti-tumor interactions of 14-3-3 proteins by cotylenin A. J Mol Biol 386:913–919. https://doi.org/10.1016/j.jmb.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  12. Sassa T, Togashi M, Kitaguchi T (1975) The structures of cotylenins A, B, C, D and E. Agr Biol Chem 39:1735–1744. https://doi.org/10.1080/00021369.1975.10861845

    Article  CAS  Google Scholar 

  13. Sassa T, Takahama A (1975) Isolation and identification of cotylenins F and G. Agr Biol Chem 39:2213–2215. https://doi.org/10.1080/00021369.1975.10861916

    Article  CAS  Google Scholar 

  14. Takahama A, Sassa T, Ikeda M, Nukina M (1979) Isolation and structures of minor metabolites, cotylenins H and I. Agr Biol Chem 43:647–650. https://doi.org/10.1080/00021369.1979.10863477

    Article  CAS  Google Scholar 

  15. Sassa T, Sakata Y, Nukina M, Ikeda M (1981) Germination-stimulating activity and chemical structure of cotylenin. Nippon Kagakukaishi: 895–898

    Google Scholar 

  16. Ono Y, Minami A, Noike M, Higuchi Y, Toyomasu T, Sassa T, Kato N, Dairi T (2011) Dioxygenases, key enzymes to determine the aglycon structures of fusicoccin and brassicicene, diterpene compounds produced by fungi. J Am Chem Soc 133:2548–2555. https://doi.org/10.1021/ja107785u

    Article  CAS  PubMed  Google Scholar 

  17. Nagatani K, Hoshino Y, Tezuka H, Nakada M (2017) Enantioselective preparation of C-ring fragment of cotylenin A via catalytic asymmetric intramolecular cyclopropanation of α-diazo β-keto ester. Tetrahedron Lett 58:959–962. https://doi.org/10.1016/j.tetlet.2017.01.076

    Article  CAS  Google Scholar 

  18. Kato N, Tanaka S, Takeshita H (1986) Total synthesis of cycloaraneosene, a fundamental hydrocarbon of epi-fusicoccane diterpenoids, and the structure revision of its congener, hydroxycycloaraneosene. Chem Lett 15(11):1989–1992. https://doi.org/10.1246/cl.1986.1989

    Article  Google Scholar 

  19. Kato N, Tanaka S, Takeshita H (1988) Synthetic photochemistry. XLII. total synthesis of cycloaraneosene, a fundamental hydrocarbon of 5–8-5 membered tricyclic diterpenoid from Sordaria araneosa. Bull Chem Soc Jpn 61:3231–3237. https://doi.org/10.1246/bcsj.61.3231

    Article  CAS  Google Scholar 

  20. Kato N, Nakanishi K, Wu X, Nishikawa H, Takeshita H (1994) Total synthesis of fusicogigantones A and B and fusicogigantepoxide via the singlet oxygen-oxidation of fusicoceadienes. “fusicogigantepoxide B”, a missing congener metabolite. Tetrahedron Lett 35:8205–8208. https://doi.org/10.1016/0040-4039(94)88283-5

    Article  CAS  Google Scholar 

  21. Paquette LA, Sun L-Q, Friedrich D, Savage PB (1997) Highly enantioselective total synthesis of natural epoxydictymene. An alkoxy-directed cyclization route to highly strained trans-oxabicyclo[3.3.0]octanes. Tetrahedron Lett 38:195–198. https://doi.org/10.1016/S0040-4039(96)02287-3

    Article  CAS  Google Scholar 

  22. Paquette LA, Sun L-Q, Friedrich D, Savage PB (1997) Total synthesis of (+)-epoxydictymene. application of alkoxy-directed cyclization to diterpenoid construction. J Am Chem Soc 119:8438–8450. https://doi.org/10.1021/ja971526v

    Article  CAS  Google Scholar 

  23. Michalak K, Michalak M, Wicha J (2005) Studies towards the total synthesis of di- and sesterterpenes with dicyclopenta[a, d]cyclooctane skeletons: three-component approach to the A/B rings building block. Molecules 10:1084–1100. https://doi.org/10.3390/10091084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Williams DR, Robinson LA, Nevill CR, Reddy JP (2007) Strategies for the synthesis of fusicoccanes by Nazarov reactions of dolabelladienones: total synthesis of (+)-fusicoauritone. Angew Chem Int Ed 46:915–918. https://doi.org/10.1002/anie.200603853

    Article  CAS  Google Scholar 

  25. Dake GR, Fenster EE, Patrick BO (2008) A synthetic approach to the fusicoccane A-B ring fragment based on a Pauson-Khand cycloaddition/Norrish type 1 fragmentation. J Org Chem 73:6711–6715. https://doi.org/10.1021/jo800933f

    Article  CAS  PubMed  Google Scholar 

  26. Srikrishna A, Nagaraju G (2011) Enantiospecific approach to AB-ring system of the diterpenes fusicoccanes. Indian J Chem, Sect B: Org Chem Incl Med Chem 50B:73–76

    CAS  Google Scholar 

  27. Fujitani B, Hanaya K, Higashibayashi S, Shoji M, Sugai T (2017) Construction of 2,6,9,11-tetraoxatricyclo[6.2.1.03,8]undecane containing 4-keto-D-glucose skeleton. Tetrahedron 73:7217–7222. https://doi.org/10.1016/j.tet.2017.11.008

    Article  CAS  Google Scholar 

  28. Kuwata K, Hanaya K, Higashibayashi S, Sugai T, Shoji M (2017) Synthesis of the 1,2-seco fusicoccane diterpene skeleton by Stille coupling reaction between the highly functionalized A and C ring segments of cotylenin A. Tetrahedron 73:6039–6045. https://doi.org/10.1016/j.tet.2017.08.056

    Article  CAS  Google Scholar 

  29. Kuwata K, Hanaya K, Sugai T, Shoji M (2017) Chemo-enzymatic synthesis of (R)-5-hydroxymethyl-2-isopropyl-5-methylcyclopent-1-en-1-yl trifluoromethylsulfonate, a potential chiral building block for multicyclic terpenoids. Tetrahedron: Asymmetry 28:964–968. https://doi.org/10.1016/j.tetasy.2017.05.007

  30. Okamoto H, Arita H, Kato N, Takeshita H (1994) Total synthesis of (-)-cotylenol, a fungal metabolite having a leaf growth activity. Chem Lett 23(12):2335–2338. https://doi.org/10.1246/cl.1994.2335

    Article  Google Scholar 

  31. Kato N, Okamoto H, Takeshita H (1996) Total synthesis of optically active cotylenol, a fungal metabolite having a leaf growth activity. Intramolecular ene reaction for an eight-membered ring formation. Tetrahedron 52:3921–3932. https://doi.org/10.1016/S0040-4020(96)00059-2

    Article  CAS  Google Scholar 

  32. Uwamori M, Osada R, Sugiyama R, Nagatani K, NakadaM (2020) Enantioselective total synthesis of cotylenin A. J Am Chem Soc 142:5556–5561. https://dx.doi.org/10.1021/jacs.0c01774

  33. Hirai S, Utsugi M, Iwamoto M, Nakada M (2015) Formal total synthesis of (–)-taxol through Pd-catalyzed eight-membered carbocyclic ring formation. Chem-Eur J 21:355–359. https://doi.org/10.1002/chem.201404295

    Article  CAS  PubMed  Google Scholar 

  34. Honma M, Sawada T, Fujisawa Y, Utsugi M, Watanabe H, Umino A, Matsumura T, Hagihara T, Takano M, Nakada M (2003) Asymmetric catalysis on the intramolecular cyclopropanation of α-diazo-β-keto sulfones. J Am Chem Soc 125:2860–2861. https://doi.org/10.1021/ja029534l

    Article  CAS  PubMed  Google Scholar 

  35. Honma M, Takeda H, Takano M, Nakada M (2009) Development of catalytic asymmetric intramolecular cyclopropanation of α-diazo-β-keto sulfones and applications to natural product synthesis. Synlett 11:1695–1712. https://doi.org/10.1055/s-0029-1217363

    Article  CAS  Google Scholar 

  36. Yoshikai K, Hayama T, Nishimura K, Yamada K-I, Tomioka K (2005) Thiol-catalyzed acyl radical cyclization of alkenals. J Org Chem 70:681–683. https://doi.org/10.1021/jo048275a

    Article  CAS  PubMed  Google Scholar 

  37. Maruoka K, Ooi T, Nagahara S, Yamamoto H (1991) Organoaluminum-catalyzed rearrangement of epoxides A facile route to the synthesis of optically active β-siloxy aldehydes. Tetrahedron 47:6983–6998. https://doi.org/10.1016/S0040-4020(01)96153-8

    Article  CAS  Google Scholar 

  38. CCDC 1983382 (13) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.1983382

  39. Nozaki K, Oshima K, Utimoto K (1988) Facile routes to boron enolates. Et3B-mediated Reformatsky type reaction and three components coupling reaction of alkyl iodides, methyl vinyl ketone, and carbonyl compounds. Tetrahedron Lett 29:1041–1044. https://doi.org/10.1016/0040-4039(88)85330-9

    Article  CAS  Google Scholar 

  40. Tsuna K, Noguchi N, Nakada M (2011) Convergent total synthesis of (+)-ophiobolin A. Angew Chem Int Ed 50:9452–9455. https://doi.org/10.1002/anie.201104447

    Article  CAS  Google Scholar 

  41. Tsuna K, Noguchi N, Nakada M (2013) Enantioselective total synthesis of (+)-ophiobolin A. Chem-Eur J 19:5476–5486. https://doi.org/10.1002/chem.201204119

    Article  CAS  PubMed  Google Scholar 

  42. Lebsack AD, Overman LE, Valentekovich RJ (2001) Enantioselective total synthesis of shahamin K. J Am Chem Soc 123:4851–4852. https://doi.org/10.1021/ja015802o

    Article  CAS  PubMed  Google Scholar 

  43. Takai K, Kakiuchi Y, Kataoka K, Utimoto K (1994) A novel catalytic effect of lead on the reduction of a zinc carbenoid with zinc metal leading to a geminal dizinc compound. Acceleration of the Wittig-type olefination with the RCHX2-TiCl4-Zn systems by addition of lead. J Org Chem 59:2668–2670. https://doi.org/10.1021/jo00089a002

    Article  CAS  Google Scholar 

  44. Colby EA, O’Brien KC, Jamison TF (2004) Synthesis of amphidinolide T1 via catalytic, stereoselective macrocyclization. J Am Chem Soc 126:998–999. https://doi.org/10.1021/ja039716v

    Article  CAS  PubMed  Google Scholar 

  45. Utsugi M, Kamada Y, Miyamoto H, Nakada M (2008) Synthetic studies on the taxane skeleton: effective construction of eight-membered carbocyclic ring by palladium-catalyzed intramolecular α-alkenylation of a methyl ketone. Tetrahedron Lett 49:4754–4757. https://doi.org/10.1016/j.tetlet.2008.05.105

    Article  CAS  Google Scholar 

  46. Evans DA, Chapman KT, Carreira EM (1988) Directed reduction of ß-hydroxy ketones employing tetramethylammonium triacetoxyborohydride. J Am Chem Soc 110:3560–3578. https://doi.org/10.1021/ja00219a035

    Article  CAS  Google Scholar 

  47. Sassa T, Negoro T, Ueki H (1972) The stereostructure of cotylenol, the aglycone of cotylenins leaf growth substances. Agr Biol Chem 36:2281–2285. https://doi.org/10.1080/00021369.1972.10860584

    Article  CAS  Google Scholar 

  48. Sassa T, Takahama A, Shindo T (1975) The stereostructure of cotylenol, the aglycone of cotylenins leaf growth substances. Agr Biol Chem 39:1729–1734. https://doi.org/10.1080/00021369.1975.10861844

    Article  CAS  Google Scholar 

  49. Crish D, Smith M (2001) 1-Benzenesulfinyl piperidine/trifluoromethanesulfonic anhydride: a potent combination of shelf-stable reagents for the low-temperature conversion of thioglycosides to glycosyl triflates and for the formation of diverse glycosidic linkages. J Am Chem Soc 123:9015–9020. https://doi.org/10.1021/ja0111481

    Article  CAS  Google Scholar 

  50. Meng L, Wu P, Fang J, Xiao Y, Xiao X, Tu G, Ma X, Teng S, Zeng J, Wan Q (2019) Glycosylation enabled by successive rhodium(II) and Brønsted acid catalysis. J Am Chem Soc 141:11775–11780. https://doi.org/10.1021/jacs.9b04619

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahisa Nakada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uwamori, M., Osada, R., Sugiyama, R., Nagatani, K., Nakada, M. (2021). Convergent Total Synthesis of (+)-Cotylenin A. In: Fukase, K., Doi, T. (eds) Middle Molecular Strategy. Springer, Singapore. https://doi.org/10.1007/978-981-16-2458-2_7

Download citation

Publish with us

Policies and ethics