Skip to main content

Development and Integration of New Green Reactions

  • Chapter
  • First Online:
Middle Molecular Strategy

Abstract

Over the last few decades, the quest for environmentally benign chemical transformations has become an important topic in both industrial and academic research. An integrated synthesis that combines multiple reactions in a single operation in a one-pot or a flow system without isolating intermediates has recently drawn much attention as a replacement for conventional step-by-step synthesis. Because in the reaction integration process the reaction mixtures are directly used to the next reaction without purification and the generated co- and by-products may have negative effects on the next reaction, integrating highly atom-economical reactions is quite important. To this end, we developed several highly atom-economical direct catalytic reactions. In this review, we focused on the developments of synthesis and reactions of N-unprotected ketimines and their applications for time integration (one-pot sequential process through N-unprotected ketimine synthesis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.chem.sci.osaka-u.ac.jp/lab/fukase/middle-molecule/eng/outline/index.html

  2. Trost BM (1991) The atom economy—a search for synthetic efficiency. Science 254:1471–1477

    Article  CAS  PubMed  Google Scholar 

  3. Wender PA, Verma VA, Paxton TJ, Pillow TH (2008) Function-oriented synthesis, step economy, and drug design. Acc Chem Res 41:40–49

    Article  CAS  PubMed  Google Scholar 

  4. Hayashi Y, Umemiya S (2013) Pot economy in the synthesis of prostaglandin A1 and E1 methyl esters. Angew Chem Int Ed 52:3450–3452

    Article  CAS  Google Scholar 

  5. Yoshida J, Shimizu A, Ashikari Y, Morofuji T, Hayashi R, Nokami T, Nagaki A (2015) Reaction integration using electrogenerated cationic intermediates. Bull Chem Soc Jpn 88:763–775

    Article  CAS  Google Scholar 

  6. Nakatake D, Yazaki R, Matsushima Y, Ohshima T (2016) Transesterification reaction catalyzed by recyclable heterogeneous zinc/imidazole catalyst. Adv Synth Catal 358:2569–2574

    Article  CAS  Google Scholar 

  7. Horikawa R, Fujimoto C, Yazaki R, Ohshima T (2016) μ-Oxo-dinuclear iron(III) catalyzed O-selective acylation of aliphatic and aromatic amino alcohols and transesterification of tertiary alcohols. Chem Eur J 22:12278–12281

    Article  CAS  PubMed  Google Scholar 

  8. Nakatake D, Yazaki R, Ohshima T (2016) Transesterification reaction catalyzed by recyclable heterogeneous zinc/imidazole catalyst. Eur J Org Chem 3696–3699

    Google Scholar 

  9. Li Z, Yazaki R, Ohshima T (2016) Chemo- and regioselective direct functional group installation through catalytic hydroxy group selective conjugate addition of amino alcohols to α, β-unsaturated sulfonyl compounds. Org Lett 18:3350–3353

    Article  CAS  PubMed  Google Scholar 

  10. Noshita M, Shimizu Y, Morimoto H, Ohshima T (2016) Diethylenetriamine-mediated direct cleavage of unactivated carbamates and ureas. Org Lett 18:6062–6065

    Article  CAS  PubMed  Google Scholar 

  11. Noshita M, Shimizu Y, Morimoto H, Akai S, Hamashima Y, Ohneda N, Odajima H, Ohshima T (2019) Ammonium salt-accelerated hydrazinolysis of unactivated amides: mechanistic investigation and application to a microwave flow process. Org Process Res Dev 23:588–594

    Article  CAS  Google Scholar 

  12. Deguchi T, Xin H, Morimoto H, Ohshima T (2017) Direct catalytic alcoholysis of unactivated 8-aminoquinoline amides. ACS Catal 7:3157–3161

    Article  CAS  Google Scholar 

  13. Tanaka T, Tanaka T, Tsuji T, Yazaki R, Ohshima T (2018) Strategy for catalytic chemoselective cross-enolate coupling reaction via a transient homocoupling dimer. Org Lett 20:3541–3544

    Article  CAS  PubMed  Google Scholar 

  14. Tanaka T, Hashiguchi K, Tanaka T, Yazaki R, Ohshima T (2018) Chemoselective catalytic dehydrogenative cross-coupling of 2-acylimidazoles: mechanistic investigations and synthetic scope. ACS Catal 8:8430–8440

    Article  CAS  Google Scholar 

  15. Tanaka T, Yazaki R, Ohshima T (2020) Chemoselective catalytic α-oxidation of carboxylic acids: iron/alkali metal cooperative redox active catalysis. J Am Chem Soc 142:4517–4524

    Article  CAS  PubMed  Google Scholar 

  16. Matsumoto Y, Sawamura J, Murata Y, Nishikata T, Yazaki R, Ohshima T (2020) Amino acid schiff base bearing benzophenone imine as a platform for highly congested unnatural α-amino acid synthesis. J Am Chem Soc 142:8498–8505

    Article  CAS  PubMed  Google Scholar 

  17. Morisaki K, Morimoto H, Ohshima T (2020) Recent progress on catalytic addition reactions to N-unsubstituted imines. ACS Catal 10:6924–6951

    Article  CAS  Google Scholar 

  18. Dewick PM (2009) Medicinal natural products, 3rd edn. Wiley, New Jersey, pp 311–420

    Google Scholar 

  19. Lin GQ, You QD, Cheng JF (eds) (2011) Chiral drugs: chemistry and biological action. Wiley, New Jersey

    Google Scholar 

  20. Kumagai N, Shibasaki M (2015) Recent advances in catalytic asymmetric C–C bond-forming reactions to ketimines promoted by metal-based catalysts. Bull Chem Soc Jpn 88:503–517

    Article  CAS  Google Scholar 

  21. Wuts PGM (ed) (2014) Greene’s protective groups in organic synthesis, 5th edn. Wiley, New Jersey

    Google Scholar 

  22. Morisaki K, Sawa M, Nomaguchi J, Morimoto H, Takeuchi Y, Mashima K, Ohshima T (2013) Rh-catalyzed direct enantioselective alkynylation of α-ketiminoesters. Chem Eur J 19:8417–8420

    Article  CAS  PubMed  Google Scholar 

  23. Morisaki K, Sawa M, Yonesaki R, Morimoto H, Mashima K, Ohshima T (2016) Mechanistic studies and expansion of the substrate scope of direct enantioselective alkynylation of α-ketiminoesters catalyzed by adaptable (phebox)rhodium(III) complexes. J Am Chem Soc 138:6194–6203

    Article  CAS  PubMed  Google Scholar 

  24. Morisaki K, Morimoto H, Mashima K, Ohshima T (2018) Development of direct enantioselective alkynylation of α-ketoester and α-ketiminoesters catalyzed by phenylbis(oxazoline)Rh(III) complexes. J Synth Org Chem Jap 76:226–240

    Article  CAS  Google Scholar 

  25. Appel R, Mayr H (2011) Quantification of the electrophilic reactivities of aldehydes, imines, and enones. J Am Chem Soc 133:8240–8251

    Article  CAS  PubMed  Google Scholar 

  26. McCarty CG (1970). In: Patai S (ed) The chemistry of the carbon-nitrogen double bond. Wiley, London, chap. 9

    Google Scholar 

  27. Ohshima T, Morimoto H, Morisaki K (2015) Catalytic asymmet-ric 1,2-alkynylation. In: Reference module in chemistry, molecular sciences and chemical engineering (an update of comprehensive chirality 2012), vol 4. Elsevier, pp 355–377

    Google Scholar 

  28. Morisaki K, Morimoto H, Ohshima T (2017) Direct Access to N-unprotected tetrasubstituted propargylamines via direct catalytic alkynylation of N-unprotected trifluoromethyl ketimines. Chem Commun 53:6319–6322

    Article  CAS  Google Scholar 

  29. Sukach VA, Golovach NM, Pirozhenko VV, Rusanov EB, Vovk MV (2008) Convenient enantioselective synthesis of β-trifluoromethyl-β-aminoketones by organocatalytic asymmetric mannich reaction of aryl trifluoromethyl ketimines with acetone. Tetrahedron Asymmetry 19:761–764

    Google Scholar 

  30. Hara N, Tamura R, Funahashi Y, Nakamura S (2011) N-(Heteroarenesulfonyl)prolinamides-catalyzed aldol reaction between acetone and aryl trihalomethyl ketones. Org Lett 13:1662–1665

    Article  CAS  PubMed  Google Scholar 

  31. Rassukana YV, Yelenich IP, Vlasenko YG, Onys’ko PP (2014) Asymmetric synthesis of phosphonotrifluoroalanine derivatives via proline-catalyzed direct enantioselective C–C bond formation reaction of N–H trifluoroacetimidoyl phosphonate. Tetrahedron Asymmetry 25:1234–1238

    Google Scholar 

  32. Sawa M, Morisaki K, Kondo Y, Morimoto H, Ohshima T (2017) Direct access to N-unprotected α- and/or β-tetrasubstituted amino acid esters via direct catalytic mannich-type reactions using N-unprotected trifluoromethyl ketimines. Chem Eur J 23:17022–17028

    Article  CAS  PubMed  Google Scholar 

  33. Zhao Q, Wen J, Tan R, Huang K, Metola P, Wang R, Anslyn EV, Zhang X (2014) Rhodium-catalyzed asymmetric hydrogenation of unprotected NH imines assisted by a thiourea. Angew Chem Int Ed 53:8467–8470

    Article  CAS  Google Scholar 

  34. Sawa M, Miyazaki S, Yonesaki R, Morimoto H, Ohshima T (2018) Catalytic enantioselective decarboxylative mannich-type reaction of N-unprotected isatin-derived ketimines. Org Lett 20:5393–5397

    Article  CAS  PubMed  Google Scholar 

  35. Emura T, Esaki T, Tachibana K, Shimizu M (2006) Efficient asymmetric synthesis of novel gastrin receptor antagonist AG-041R via highly stereoselective alkylation of oxindole enolates. J Org Chem 71:8559–8664

    Article  CAS  PubMed  Google Scholar 

  36. Rassukana YV (2011) Methyl α-iminotrifluoropropionate: a novel convenient building block for the preparation of functionalized derivatives bearing a trifluoroalanine residue. Synthesis 3426–3428

    Google Scholar 

  37. Rassukana YV, Yelenich IP, Synytsya AD, Onys’ko PP (2014) Fluorinated NH-iminophosphonates and iminocarboxylates: novel synthons for the preparation of biorelevant α-aminophosphonates and carboxylates. Tetrahedron 70:2928–2937

    Article  CAS  Google Scholar 

  38. Yonesaki R, Kondo Y, Akkad W, Sawa M, Morisaki K, Morimoto H, Ohshima T (2018) 3-mono-substituted binol phosphoric acids as effective organocatalysts in direct enantioselective friedel-crafts-type alkylation of N-unprotected α-ketiminoester. Chem Eur J 24:15211–15214

    Article  CAS  PubMed  Google Scholar 

  39. Miyagawa M, Yoshida M, Kiyota Y, Akiyama T (2019) Enantioselective Friedel-crafts alkylation reaction of heteroarenes with N-unprotected trifluoromethyl ketimines by means of chiral phosphoric acid. Chem Eur J 25:5677–5681

    Article  CAS  PubMed  Google Scholar 

  40. Akiyama T, Itoh J, Yokota K, Fuchibe K (2004) Enantioselective Mannich-type reaction catalyzed by a chiral brønsted acid. Angew Chem Int Ed 43:1566–1568

    Article  CAS  Google Scholar 

  41. Uraguchi D, Terada M (2004) Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J Am Chem Soc 126:5356–5357

    Article  CAS  PubMed  Google Scholar 

  42. Droz AS, Neidlein U, Anderson S, Seiler P, Diederich F (2001) Optically active cyclophane receptors for mono- and disaccharides: the role of bidentate ionic hydrogen bonding in carbohydrate recognition. Helv Chim Acta 84:2243–2289

    Article  CAS  Google Scholar 

  43. Han X, Wu H, Wang W, Dong C, Tien P, Wu S, Zhou HB (2014) Synthesis and SARs of indole-based α-amino acids as potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Org Biomol Chem 12:8308–8317

    Article  CAS  PubMed  Google Scholar 

  44. Shintani R, Takeda M, Tsuji T, Hayashi T (2010) Rhodium-catalyzed asymmetric arylation of N-tosyl ketimines. J Am Chem Soc 132:13168–13169

    Article  CAS  PubMed  Google Scholar 

  45. Zhu J, Huang L, Dong W, Li N, Yu X, Deng WP, Tang W (2019) Enantioselective rhodium-catalyzed addition of arylboroxines to N-unprotected ketimines: efficient synthesis of cipargamin. Angew Chem Int Ed 58:16119–16123

    Article  CAS  Google Scholar 

  46. Yonesaki R, Kusagawa I, Morimoto H, Hayashi T, Ohshima T (2020) Rhodium(I)/chiral diene-catalyzed enantioselective addition of boronic acids to N-unsubstituted isatin-derived ketimines. Chem Asian J 15:499–502

    Article  CAS  PubMed  Google Scholar 

  47. Kondo Y, Morimoto H, Ohshima T (2020) Recent progress towards the use of benzophenone imines as an ammonia equivalent. Chem Lett 49:497–504

    Article  CAS  Google Scholar 

  48. Shirakawa S, Maruoka K (2013) Recent developments in asymmetric phase-transfer reactions. Angew Chem Int Ed 52:4312–4348

    Article  CAS  Google Scholar 

  49. Smith GEP Jr, Bergstrom FW (1934) The ammono ketone-alcohols. I. Benzophenoneimine. J Am Chem Soc 56:2095–2098

    Article  CAS  Google Scholar 

  50. Gosselin F, O’Shea PD, Roy S, Reamer RA, Chen C, Volante RP (2005) Unprecedented catalytic asymmetric reduction of N–H imines. Org Lett 7:355–358

    Article  CAS  PubMed  Google Scholar 

  51. Wannagat U, Münstedt R (1987) Über einige reaktionen der dialkylbenzylphosphinimide. Phosphorus Sulfur 29:233–237

    Article  CAS  Google Scholar 

  52. Strain HH (1930) Ammonolysis of ketones. J Am Chem Soc 52:820–823

    Article  CAS  Google Scholar 

  53. Kondo Y, Kadota T, Hirazawa Y, Morisaki K, Morimoto H, Ohshima T (2019) A convenient preparation method for benzophenone imine catalyzed by tetrabutylammonium fluoride. Org Process Res Dev 23:1718–1724

    Article  CAS  Google Scholar 

  54. Corriu RJP, Moreau JJE, Pataud-Sat M. Silylamines in organic synthesis. Reactivity of N,N-bis(silyl)enamines toward electrophiles. A route to substituted 2-aza-1,3-butadienes and pyridines. J Org Chem 55: 2878–2884

    Google Scholar 

  55. Singh RP, Cao G, Kirchmeier RL, Shreeve JM (1999) Cesium fluoride catalyzed trifluoromethylation of esters, aldehydes, and ketones with (trifluoromethyl)trimethylsilane. J Org Chem 55:2878

    Google Scholar 

  56. Tsunoda T, Suzuki M, Noyori R (1980) A facile procedure for acetalization under aprotic conditions. Tetrahedron Lett 21:1357–1358

    Article  CAS  Google Scholar 

  57. Duffaut N, Dupin JP (1966) Étude de l’action de silazanes et de silylamines sur quelques dérìvés carbonylés. Bull Soc Chim Fr 3205–3210

    Google Scholar 

  58. Morimoto T, Sekiya M (1985) A convenient synthetic method for schiff bases. The trimethylsilyl trifluoromethanesulfonate-catalyzed reaction of N,N-bis(trimethylsilyl)amines with aldehydes and ketones. Chem Lett 1985:1371–1372

    Article  Google Scholar 

  59. Kondo Y, Kadota T, Hirazawa Y, Morisaki K, Morimoto H, Ohshima T (2020) Scandium(III) triflate catalyzed direct synthesis of N-unprotected ketimines. Org Lett 22:120–125

    Article  CAS  PubMed  Google Scholar 

  60. Kadota T, Sawa M, Morimoto H, Ohshima T, manuscript in preparation

    Google Scholar 

  61. Morimoto T, Nezu Y, Achiwa K, Sekiya M (1985) A new synthetic method for sulphenimines. Fluoride-catalysed reaction of N,N-bis(trimethylsilyl)sulphenamides with aldehydes and ketones. J Chem Soc Chem Commun 1584–1585

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Ohshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ohshima, T., Morimoto, H., Kadota, T. (2021). Development and Integration of New Green Reactions. In: Fukase, K., Doi, T. (eds) Middle Molecular Strategy. Springer, Singapore. https://doi.org/10.1007/978-981-16-2458-2_15

Download citation

Publish with us

Policies and ethics