Skip to main content

Efficient Access to Highly Condensed Aromatic Compounds Using Reactive Molecules

  • Chapter
  • First Online:
Middle Molecular Strategy
  • 353 Accesses

Abstract

Reaction integration is one of the useful synthetic methods for preparation of highly condensed aromatic compounds with diverse functionalities. Above all, utilization of the highly reactive molecules in a cascade process is powerful and straightforward tool for the rapid assembly of polycycles, since selective activation of the starting material under suitable conditions leads to the selective generation of the reactive species, which enables us to precisely construct complex structures. In this chapter, organic synthetic reactions of reactive molecules are summarized based on recent progress of our synthetic approach to poly-functionalized aromatic compounds. In particular, we focus on the generation and reaction of functionalized isoacenofuran as a novel reactive platform to efficiently access structurally attractive π-extended molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedrichsen W (1980) Benzo[c]furan. Adv Heterocyl Chem 26:135–241. https://doi.org/10.1016/S0065-2725(08)60141-5

    Article  CAS  Google Scholar 

  2. Friedrichsen W (1999) Recent advances in the chemistry of Benzo[c]furans and related compounds. Adv Heterocyl Chem 73:1–96. https://doi.org/10.1016/S0065-2725(08)60940-X

    Article  CAS  Google Scholar 

  3. Warrener RN (1971) Isolation of isobenzofuran, a stable but highly reactive molecule. J Am Chem Soc 93:2346–2348. https://doi.org/10.1021/ja00738a057

    Article  CAS  Google Scholar 

  4. Chan S-H, Yick C-Y, Wong HNC (2002) 5,6-Bis(trimethylsilyl)benzo[c]furan: an isolable versatile building block for linear polycyclic aromatic compounds. Tetrahedron 58:9413–9422. https://doi.org/10.1016/S0040-4020(02)01219-X

    Article  CAS  Google Scholar 

  5. Sygula A, Sygula R, Rabideau PW (2006) Isocorannulenofuran: a versatile building block for the synthesis of large buckybowls. Org Lett 8:5909–5911. https://doi.org/10.1021/ol0625839

    Article  CAS  PubMed  Google Scholar 

  6. Rainbolt JE, Miller GP (2007) 4,7-Diphenylisobenzofuran: a useful intermediate for the construction of phenyl-substituted acenes. J Org Chem 72:3020–3030. https://doi.org/10.1021/jo062675b

    Article  CAS  PubMed  Google Scholar 

  7. Pei BJ, Chan WH, Lee AWM (2011) Anthracene capped isobenzofuran: a synthon for the preparations of iptycenes and iptycene quinones. Org Lett 13:1774–1777. https://doi.org/10.1021/ol200309v

    Article  CAS  PubMed  Google Scholar 

  8. Cava MP, Napier DR, Pohl RJ (1963) Condensed cyclobutane aromatic compounds. XXVI. Benzocyclobutadienoquinone: synthesis and simple transformations. J Am Chem Soc 85:2076–2080. https://doi.org/10.1021/ja00897a011

    Article  CAS  Google Scholar 

  9. Cava MP, Van Meter JP (1969) Condensed cyclobutane aromatic compounds. XXX. Synthesis of some unusual 2,3-naphthoquinonoid heterocycles. A synthetic route to derivatives of naphtho[2,3-b]biphenylene and anthra[b]cyclobutene. J Org Chem 34:538–545. https://doi.org/10.1021/jo01255a012

    Article  CAS  Google Scholar 

  10. Benderradji F, Nechab M, Einhorn C, Einhorn J (2006) A single-step synthesis of symmetrical 1,3-diarylisobenzofurans. Synlett 13:2035–2038. https://doi.org/10.1055/s-2006-948179

    Article  CAS  Google Scholar 

  11. Kuninobu Y, Nishina Y, Nakagawa C, Takai K (2006) Rhenium-catalyzed insertion of aldehyde into a C–H bond: synthesis of isobenzofuran derivatives. J Am Chem Soc 128:12376–12377. https://doi.org/10.1021/ja065643e

    Article  CAS  PubMed  Google Scholar 

  12. Jacq J, Einhorn C, Einhorn J (2008) A versatile and regiospecific synthesis of functionalized 1,3-diarylisobenzofurans. Org Lett 10:3757–3760. https://doi.org/10.1021/ol801550a

    Article  CAS  PubMed  Google Scholar 

  13. Nishina Y, Kida T, Ureshino T (2011) Facile Sc(OTf)3-catalyzed generation and successive aromatization of isobenzofuran from o-dicarbonylbenzenes. Org Lett 13:3960–3963. https://doi.org/10.1021/ol201479p

    Article  CAS  PubMed  Google Scholar 

  14. Meek ST, Nesterov EE, Swager TM (2008) Near-infrared fluorophores containing Benzo[c]heterocycle subunits. Org Lett 10:2991–2993. https://doi.org/10.1021/ol800988w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang H, Wakamiya A, Yamaguchi S (2008) Highly electron-donating 3,3′-Diaryl-1,1′-bi(isobenzofuran)s synthesized by photochemical exocyclic [2+2+2] cycloaddition. Org Lett 10:3591–3594. https://doi.org/10.1021/ol801358c

    Article  CAS  PubMed  Google Scholar 

  16. Hamura T, Nakayama R (2013) A one-pot preparation of 1,3-diarylisobenzofuran. Chem Lett 42:1013–1015. https://doi.org/10.1246/cl.130398

    Article  CAS  Google Scholar 

  17. Asahina K, Matsuoka S, Nakayama R, Hamura T (2014) An efficient synthetic route to 1,3-bis(arylethynyl)-isobenzofuran by using alkoxybenzocyclobutenone as a reactive platform. Org Biomol Chem 12:9773–9776. https://doi.org/10.1039/c4ob02012j

    Article  CAS  PubMed  Google Scholar 

  18. Kudo R, Kitamura K, Hamura T (2017) 1,3-dialkynyl- and 1,3-dialkenylisobenzofurans: new π-extended congeners prepared by double nucleophilic addition of alkynyllithiums to o-phthalaldehyde. Chem Lett 46:25–28. https://doi.org/10.1246/cl.160884

    Article  CAS  Google Scholar 

  19. Tozawa H, Kitamura K, Hamura T (2017) Water-soluble 1,3-diarylisobenzoheteroles: syntheses and characterization. Chem Lett 46:703–706. https://doi.org/10.1246/cl.170137

    Article  CAS  Google Scholar 

  20. Moss RA, Platz MS, Jones M Jr (eds) (2004) Reactive intermediate chemistry. Wiley, Hoboken, NJ

    Google Scholar 

  21. Singh MS (2014) Reactive intermediates in organic chemistry. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  22. Eda S, Hamura T (2015) Selective halogen-lithium exchange of 1,2-dihaloarenes for successive [2+4] cycloadditions of arynes and isobenzofurans. Molecules 20:19449–19462. https://doi.org/10.3390/molecules201019449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haneda H, Eda S, Aratani M, Hamura T (2014) Dibromoisobenzofuran as a formal equivalent of didehydroisobenzofuran: reactive platform for expeditious assembly of polycycles. Org Lett 16:286–289. https://doi.org/10.1021/ol4032792

    Article  CAS  PubMed  Google Scholar 

  24. Matsuoka S, Jung S, Miyakawa K, Chuda Y, Sugimoto R, Hamura T (2018) Didehydroisobenzofuran: a new reactive intermediate for construction of isoacenofuran. Chem Eur J 24:18886–18889. https://doi.org/10.1002/chem.201804655

    Article  CAS  PubMed  Google Scholar 

  25. Clayden J (2002) Organolithiums: selectivity for synthesis, vol 23. Tetrahedron organic chemistry series. Pergamon, Oxford, pp 111–147

    Book  Google Scholar 

  26. Beak P, Allen DJ (1992) Experimental evaluation of transition structure geometry for an aryl bromide-alkyllithium exchange reaction: new information relevant to the reaction mechanism. J Am Chem Soc 114:3420–3425. https://doi.org/10.1021/ja00035a039

    Article  CAS  Google Scholar 

  27. Nájera C, Sansano JM, Yus M (2003) Recent synthetic uses of functionalised aromatic and heteroaromatic organolithium reagents prepared by non-deprotonating methods. Tetrahedron 59:9255–9303. https://doi.org/10.1016/j.tet.2003.09.065

    Article  CAS  Google Scholar 

  28. Dabrowski M, Kubicka J, Lulinski S, Serwatowski J (2005) Halogen–lithium exchange between substituted dihalobenzenes and butyllithium: application to the regioselective synthesis of functionalized bromobenzaldehydes. Tetrahedron 61:6590–6595. https://doi.org/10.1016/j.tet.2005.04.051

    Article  CAS  Google Scholar 

  29. Bendikov M, Wudl F, Perepichka DF (2004) Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: the brick and mortar of organic electronics. Chem Rev 104:4891–4946. https://doi.org/10.1021/cr030666m

    Article  CAS  PubMed  Google Scholar 

  30. Anthony JE (2006) Functionalized acenes and heteroacenes for organic electronics. Chem Rev 106:5028–5048. https://doi.org/10.1021/cr050966z

    Article  CAS  PubMed  Google Scholar 

  31. Anthony JE (2008) The larger acenes: versatile organic semiconductors. Angew Chem Int Ed 47:452–483. https://doi.org/10.1002/anie.200604045

    Article  CAS  Google Scholar 

  32. Bettinger HF (2010) Electronic structure of higher acenes and polyacene: the perspective developed by theoretical analyses. Pure Appl Chem 82:905–915. https://doi.org/10.1351/PAC-CON-09-10-29

    Article  CAS  Google Scholar 

  33. Shi X, Gopalakrishna TY, Wang Q, Chi C (2017) Non-classical S-heteroacenes with o-quinoidal Conjugation and open-shell diradical character. Chem Eur J 23:8525–8531. https://doi.org/10.1002/chem.201701813

    Article  CAS  PubMed  Google Scholar 

  34. Pérez D, Peña D, Guitián E (2013) Aryne cycloaddition reactions in the synthesis of large polycyclic aromatic compounds. Eur J Org Chem 2013:5981–6013. https://doi.org/10.1002/ejoc.201300470

    Article  CAS  Google Scholar 

  35. Scott LT (2010) Polycyclic aromatic hydrocarbon bowls, baskets, balls, and tubes: challenging targets for chemical synthesis. Polycyclic Aromat Compd 30:247–259. https://doi.org/10.1080/10406638.2010.524850

    Article  CAS  Google Scholar 

  36. Kanibolotsky AL, Perepichka IF, Skabara PJ (2010) Star-shaped π-conjugated oligomers and their applications in organic electronics and photonics. Chem Soc Rev 39:2695–2728. https://doi.org/10.1039/B918154G

    Article  CAS  PubMed  Google Scholar 

  37. Zhang H, Wu D, Liu SH, Yin J (2012) Star-shaped polycyclic aromatic hydrocarbons: design and synthesis of molecules. Curr Org Chem 16:2124–2158. https://doi.org/10.2174/138527212803532477

    Article  CAS  Google Scholar 

  38. Lynett PT, Maly KE (2009) Synthesis of substituted trinaphthylenes via aryne cyclotrimerization. Org Lett 11:3726–3729. https://doi.org/10.1021/ol9013443

    Article  CAS  PubMed  Google Scholar 

  39. Alonso JM, Díaz-Álvarez AE, Criado A, Pérez D, Peña D, Guitián E (2012) Cloverphene: a clover-shaped cata-condensed nanographene with sixteen fused benzene rings. Angew Chem Int Ed 51:173–177. https://doi.org/10.1002/anie.201104935

    Article  CAS  Google Scholar 

  40. Rüdiger EC, Porz M, Schaffroth M, Rominger F, Bunz UHF (2014) Synthesis of soluble, alkyne-substituted trideca- and hexadeca-starphenes. Chem Eur J 20:12725–12728. https://doi.org/10.1002/chem.201403697

    Article  CAS  PubMed  Google Scholar 

  41. Yao B, Zhou Y, Ye X, Wang R, Zhang J, Wan X (2017) A star-shaped molecule with low-lying lowest unoccupied molecular orbital level, n-type panchromatic electrochromism, and long-term stability. Org Lett 19:1990–1993. https://doi.org/10.1021/acs.orglett.7b00522

    Article  CAS  PubMed  Google Scholar 

  42. Tanokashira N, Kukita S, Kato H, Nehira T, Angkouw ED, Mangindaan REP, de Voogd NJ, Tsukamoto S (2016) Petroquinones: trimeric and dimeric xestoquinone derivatives isolated from the marine sponge Petrosia alfiani. Tetrahedron 72:5530–5540. https://doi.org/10.1016/j.tet.2016.07.045

    Article  CAS  Google Scholar 

  43. Fieser LF, Haddadin MJ (1964) Isobenzofuran, a transient intermediate. J Am Chem Soc 86:2081–2082. https://doi.org/10.1021/ja01064a044

    Article  CAS  Google Scholar 

  44. Fieser LF, Haddadin MJ (1965) Isobenzofurane, a transient intermediate. Can J Chem 43:1599–1606. https://doi.org/10.1139/v65-211

    Article  CAS  Google Scholar 

  45. Luo J, Hart H (1989) A short route to 2,3-dimethylene-7-oxabenzonorbornenes. J Org Chem 54:1762–1764. https://doi.org/10.1021/jo00268a053

    Article  CAS  Google Scholar 

  46. Peña D, Escudero S, Pérez D, Guitián E, Castedo L (1998) Efficient palladium-catalyzed cyclotrimerization of arynes: synthesis of triphenylenes. Angew Chem Int Ed 37:2659–2661. https://doi.org/10.1002/(SICI)1521-3773(19981016)37:19%3c2659:AID-ANIE2659%3e3.0.CO;2-4

    Article  Google Scholar 

  47. Peña D, Pérez D, Guitián E, Castedo L (1999) Synthesis of hexabenzotriphenylene and other strained polycyclic aromatic hydrocarbons by palladium-catalyzed cyclotrimerization of arynes. Org Lett 1:1555–1557. https://doi.org/10.1021/ol990864t

    Article  CAS  Google Scholar 

  48. Peña D, Cobas A, Pérez D, Guitián E, Castedo L (2000) Kinetic control in the palladium-catalyzed synthesis of C2-symmetric hexabenzotriphenylene. A conformational study. Org Lett 2:1629–1632. https://doi.org/10.1021/ol005916p

    Article  CAS  PubMed  Google Scholar 

  49. Peña D, Pérez D, Guitián E, Castedo L (2000) Selective palladium-catalyzed cocyclotrimerization of arynes with dimethyl acetylenedicarboxylate: a versatile method for the synthesis of polycyclic aromatic hydrocarbons. J Org Chem 65:6944–6950. https://doi.org/10.1021/jo000535a

    Article  CAS  PubMed  Google Scholar 

  50. Romero C, Peña D, Pérez D, Guitián E (2006) Synthesis of extended triphenylenes by palladium-catalyzed [2+2+2] cycloaddition of triphenylynes. Chem Eur J 12:5677–5684. https://doi.org/10.1002/chem.200600466

    Article  CAS  PubMed  Google Scholar 

  51. Watson MD, Fechtenkötter A, Müllen K (2001) Big is beautiful-“aromaticity” revisited from the viewpoint of macromolecular and supramolecular benzene chemistry. Chem Rev 101:1267–1300. https://doi.org/10.1021/cr990322p

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Hamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamura, T. (2021). Efficient Access to Highly Condensed Aromatic Compounds Using Reactive Molecules. In: Fukase, K., Doi, T. (eds) Middle Molecular Strategy. Springer, Singapore. https://doi.org/10.1007/978-981-16-2458-2_12

Download citation

Publish with us

Policies and ethics