Skip to main content

Study of Dry Climate During Extreme El-Nino Occurrence for Plantation Commodities in Nangapanda, East Nusa Tenggara

  • Conference paper
  • First Online:
Sustainable Architecture and Building Environment

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 161))

  • 539 Accesses

Abstract

El Nino is an anomaly in sea surface temperature in the Pacific Ocean, resulting in dry conditions and reduced rainfall in Indonesia. This anomaly can cause many things, one of which is a drought that affects plants’ growth. As a region that depends on agriculture, agriculture productivity in Nangapanda can be threatened by the dry condition derived by El Nino events. This research aims to detect the spatial and temporal of dry areas and analyze its relationship with plantation commodities productivity in Nangapanda. Landsat 5 TM and Landsat 8 OLI imagery data at the year 2009, 2015, and 2019 were used for analyzing the Normalization of Differences Vegetation Index (NDVI) and Tasseled Cap Transformation (TCT). Overlay of the NDVI and TCT will generate dry areas divided into moderate, high, and very high drought classes. Dry areas during 2019 are 2942.46 ha or 15% of the total area of Nangapanda Subdistrict. Mostly, drought areas are located in the agricultural area and shrubs area. The increasing dry area can cause a decrease in the productivity of plantation commodities in Nangapanda.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayanlade A, Radeny M, Akin-Onigbinde AI (2018) Climate variability/change and attitude to adaptation technologies: a pilot study among selected rural farmers’ communities in Nigeria. GeoJournal 83(2):319–331

    Article  Google Scholar 

  2. Alidoost F, Su Z, Stein A (2019) Evaluating the effects of climate extremes on crop yield, production and price using multivariate distributions: a new copula application. Weather Clim Extremes 26:100227

    Article  Google Scholar 

  3. Heusser LE, Hendy IL, Barron JA (2015) Vegetation response to southern California drought during the medieval climate anomaly and early little ice age (AD 800–1600). Quatern Int 387:23–35

    Article  Google Scholar 

  4. Xie SP, Kosaka Y, Du Y, Hu K, Chowdary JS, Huang G (2016) Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: a review. Adv Atmos Sci 33(4):411–432

    Article  Google Scholar 

  5. Yang K, Zhang J, Wu L, Wei J (2019) Prediction of summer hot extremes over the middle and lower reaches of the Yangtze River valley. Clim Dyn 52(5–6):2943–2957

    Article  Google Scholar 

  6. Hsu HH, Zhou T, Matsumoto J (2014) East Asian, Indochina and western North Pacific summer monsoon-an update. Asia-Pacific J Atmos Sci 50(1):45–68

    Article  Google Scholar 

  7. Fine CM, Johnson RH, Ciesielski PE, Taft RK (2016) The role of topographically induced vortices in tropical cyclone formation over the Indian Ocean. Mon Weather Rev 144(12):4827–4847

    Article  Google Scholar 

  8. Poan ED, Gachon P, Dueymes G, Diaconescu E, Laprise R, Sanda IS (2016) West African monsoon intraseasonal activity and its daily precipitation indices in regional climate models: diagnostics and challenges. Clim Dyn 47(9–10):3113–3140

    Article  Google Scholar 

  9. Qian JH, Robertson AW, Moron V (2010) Interactions among ENSO, the monsoon, and diurnal cycle in rainfall variability over Java, Indonesia. J Atmos Sci 67(11):3509–3524

    Article  Google Scholar 

  10. Alsepan G, Minobe S (2020) Relations between interannual variability of regional-scale Indonesian precipitation and large-scale climate modes during 1960–2007. J Clim 33(12):5271–5291

    Article  Google Scholar 

  11. Rashid HA, Hirst AC (2016) Investigating the mechanisms of seasonal ENSO phase locking bias in the ACCESS coupled model. Clim Dyn 46(3–4):1075–1090

    Article  Google Scholar 

  12. Roy I, Kripalani RH (2019) The role of natural factors (part 1): addressing on mechanism of different types of ENSO, related teleconnections and solar influence. Theoret Appl Climatol 137(1–2):469–480

    Article  Google Scholar 

  13. Jayanti AD, Fitriya W, Setyobudi E, Budhiyanti SA, Kune SJ (2018) The vulnerability of fishermen’s community and livelihood opportunity through drought and seasonal changes in border area of Indonesia-Timor Leste. E&ES 139(1):012030

    Google Scholar 

  14. Kuswanto H, Fithriasari K, Inas R (2018) Drought risk mapping in East Nusa Tenggara Indonesia based on return periods. Asian J Sci Res 11(4):489–497

    Article  Google Scholar 

  15. Kuswanto H, Hibatullah F, Soedjono ES, Efendi F (2019) Survey data of household perceptions of drought, mitigation and adaptation practices in East Nusa Tenggara, Indonesia. Data in brief 24:103944

    Article  Google Scholar 

  16. Patandean CF (2020) Influence of Enso to Variability of Rain Chain at Tropical Cyclon in Southern East Nusa Tenggara. Jurnal Ilmiah Ilmu Administrasi Publik 9(2):277–286

    Article  Google Scholar 

  17. Hornidge AK, Scholtes F (2011) Climate change and everyday life in Toineke Village, West Timor: uncertainties, knowledge and adaptation. Sociologus: 151–175

    Google Scholar 

  18. Lobell DB, Asseng S (2017) Comparing estimates of climate change impacts from process-based and statistical crop models. Environ Res Lett 12(1):015001

    Article  Google Scholar 

  19. Tola D (2016) Analisis Produksi Pertanian Kakao Di Kecamatan Nangapanda Kabupaten Ende. Jurnal Pendidikan Ekonomi, Ekspektasi 1(1):26–39

    Google Scholar 

  20. Lillesø JPB, Harwood C, Derero A, Graudal L, Roshetko JM, Kindt R, Moestrup S, Omondi WO, Holtne N, Mbora A, van Breugel P (2018) Why institutional environments for agroforestry seed systems matter. Dev Policy Rev 36:O89–O112

    Article  Google Scholar 

  21. Calfapietra C, Gielen B, Karnosky D, Ceulemans R, Mugnozza GS (2010) Response and potential of agroforestry crops under global change. Environ Pollut 158(4):1095–1104

    Article  Google Scholar 

  22. Pawson SM, Brin A, Brockerhoff EG, Lamb D, Payn TW, Paquette A, Parrotta JA (2013) Plantation forests, climate change and biodiversity. Biodivers Conserv 22(5):1203–1227

    Article  Google Scholar 

  23. Ghini R, Bettiol W, Hamada E (2011) Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives. Plant Pathol 60(1):122–132

    Article  Google Scholar 

  24. Directorate of Plantation, Ministry of Agriculture (2020) https://www.pertanian.go.id/home/index.php?show=repo&fileNum=251

  25. Central Bureau of Statistics of Ende Regency (2019) Ende regency in numbers. Ende Regency

    Google Scholar 

  26. NOAA (2020) Cold & warm episodes by season. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php

  27. Hogg EH, Barr AG, Black TA (2013) A simple soil moisture index for representing multi-year drought impacts on aspen productivity in the western Canadian interior. Agric For Meteorol 178:173–182

    Article  Google Scholar 

  28. Bobkov A, Panidi E, Torlopova N, Tsepelev V (2015) NDVI dynamics of the Taiga zone in connection with modern climate changes. In: International archives of the photogrammetry, remote sensing & spatial information sciences

    Google Scholar 

  29. Chandrasekar K, Sai MS (2015) Monitoring of late-season agricultural drought in cotton-growing districts of Andhra Pradesh state, India, using vegetation, water and soil moisture indices. Nat Hazards 75(2):1023–1046

    Article  Google Scholar 

  30. Rossi M, Niedrist G, Asam S, Tonon G, Tomelleri E, Zebisch M (2019) A comparison of the signal from diverse optical sensors for monitoring alpine grassland dynamics. Remote Sens 11(3):296

    Article  Google Scholar 

  31. Nangapanda Agricultural Instructor Agency (2019) Programa Penyuluhan Pertanian 2019. BPP Nangapanda, Nangapanda

    Google Scholar 

  32. Rouse JW, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. In: Third earth resources technology satellite–1 symposium, vol 1, pp 309–317

    Google Scholar 

  33. Gitelson AA, Kaufman YJ, Merzlyak MN (1996) Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ 58:25–31

    Article  Google Scholar 

  34. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  35. Sudiana D, Diasmara E (2008) Analisis Indeks Vegetasi menggunakan Data Satelit NOAA/AVHRR dan TERRA/AQUA-MODIS. In: Seminar on intelligent technology and its applications

    Google Scholar 

  36. Sobrino JA, Jiménez-Muñoz JC, Paolini L (2004) Land surface temperature retrieval from landsat TM5. Remote Sens Environ 90:434–440

    Article  Google Scholar 

  37. Taufik A, Ahmad SSS, Ahmad A (2016) Classification of landsat 8 satellite data using NDVI thresholds. J Telecommun Electron Comput Eng 8(4)

    Google Scholar 

  38. Shofiyati R, Kuncoro D (2007) Remote sensing for drought assessment on agricultural land. Informatika Pertanian 16(1):923–936

    Google Scholar 

  39. Kauth RJ, Thomas GS (1976) The tasselled cap—a graphic description of the spectral-temporal development of agricultural crops as Seen by LANDSAT. LARS Symposia. No. 159

    Google Scholar 

  40. Crist EP, Cicone RC (1984) A-physically-based transformation of thematic mapper data—The TM tasseled cap. IEEE Trans Geosci Remote Sens GE-22(3):256–263

    Google Scholar 

  41. Rahman S, Mesev V (2019) Change vector analysis, tasseled cap, and NDVI-NDMI for measuring land use/cover changes caused by a sudden short-term severe drought: 2011 Texas event. Remote Sens 11(19):2217

    Article  Google Scholar 

  42. Susilowati MHD, Wibowo A, Susiloningtyas D, Rastuti RC (2019) Mapping of drought and food insecurity region in Lebak regency Banten Province. GeoEco J 5(2):127–140

    Article  Google Scholar 

  43. Crist EP, Kauth RJ (1986) The tasseled cap de-mystified. Photogram Eng Remote Sens 52(1):81–86

    Google Scholar 

  44. Hasan ABM, Zhang L, Shuai T, Tong Q (2014) Derivation of a tasselled cap transformation based on landsat 8 at-satellite reflectance. Remote Sens Lett 5(5):423–431

    Article  Google Scholar 

  45. Wahyunto H, Suryani E et al (2016) Petunjuk Teknis Pedoman Penilaian Kesesuaian Lahan untuk Komoditas Pertanian Strategis Tingkat Semi Detail Skala 1:50.000. Bogor: Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Badan Penelitian dan Pengembangan Pertanian, 37 pages

    Google Scholar 

  46. Saha A, Patil M, Goyal VC, Rathore DS (2019) Assessment and impact of soil moisture index in agricultural drought estimation using remote sensing and GIS technique. In: Proceedings MDPI 7(2)

    Google Scholar 

  47. Anugerah MM, Wibowo A, Kusratmoko E (2019) Detection of drought area using greening index and wetness index in Sukaresmi Subdistrict, Cianjur Regency, West Java. IOP Conf Ser: Earth Environ Sci:311

    Google Scholar 

Download references

Acknowledgements

This publication were supported by DRPM (Directorate of Research and Community Service) Universitas Indonesia through PUTI Research Grant with contract number NKB-1271/UN2.RST/HKP.05.00/2020. We want to send our gratitude to the people of Nangapanda. Furthermore, our big thanks to Sanca Pamungkas for helping us to collect data in Nangapanda. Moreover, our gratitude to the Center for Human Resources and Environmental Research (PPSML), that facilitates us to conduct an initial survey through cooperation funds with contract numbers 358G/UN2.F4.D2.2/LT- KEP.SPK/X/2019. An assistance was also provided by the DIVERLING (Biodiversity for Environmental Sustainability) Research Cluster, School of Environmental Science, Universitas Indonesia. This paper’s map can also be done with the help from the Geospatial Laboratory (“Laboratorium Geospasial SIL”) at the School of Environmental Sciences, through using the Map Info Pro license software, ArcGIS ESRI license, and ENVI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halvina Grasela Saiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Putri, N.P., Saiya, H.G., Buditama, G., Yola, L. (2022). Study of Dry Climate During Extreme El-Nino Occurrence for Plantation Commodities in Nangapanda, East Nusa Tenggara. In: Yola, L., Nangkula, U., Ayegbusi, O.G., Awang, M. (eds) Sustainable Architecture and Building Environment . Lecture Notes in Civil Engineering, vol 161. Springer, Singapore. https://doi.org/10.1007/978-981-16-2329-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2329-5_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2328-8

  • Online ISBN: 978-981-16-2329-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics