Skip to main content

Ionically Gelled Polysaccharide-Based Multiple-Units in Drug Delivery

  • Chapter
  • First Online:
Ionically Gelled Biopolysaccharide Based Systems in Drug Delivery

Abstract

The design, development, and production of orally administrable multiple-unit dosage forms have mostly been based on the usage of natural polymers. Notably, the large group of polysaccharides has been taken into account by researches to produce multiple-unit dosage forms for drug administration because of their exceptional properties. Polysaccharides are biocompatible and biodegradable because they are similar to the body tissues and can be degraded by enzymatic processes. Currently, the use of ionic polysaccharides for assembly any type of particle for drug delivery systems is a trend. This chapter deals with the different polysaccharide-based Ionically gelled multiple-units in drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta H, Bhandari D, Sharma A (2009) Recent trends in oral drug delivery: a review. Recent Pat Drug Deliv Formul 3(2):162–173. https://doi.org/10.2174/187221109788452267

    Article  CAS  PubMed  Google Scholar 

  2. Nayak AK, Hasnain MS (2019) Background: multiple units in oral drug delivery. In: Plant polysaccharides-based multiple-unit systems for oral drug delivery. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore, pp 1–17. https://doi.org/10.1007/978-981-10-6784-6

  3. Debotton N, Dahan A (2017) Applications of polymers as pharmaceutical excipients in solid oral dosage forms. Med Res Rev 37(1):52–97. https://doi.org/10.1002/med.21403

    Article  CAS  PubMed  Google Scholar 

  4. Hamman H, Hamman J, Steenekamp J (2017) Multiple-unit pellet systems (MUPS): production and applications as advanced drug delivery systems. Drug Deliv Lett 7(3):201–210. https://doi.org/10.2174/2210303107666170927161351

    Article  CAS  Google Scholar 

  5. Reinholz J, Landfester K, Mailänder V (2018) The challenges of oral drug delivery via nanocarriers. Drug Deliv 25(1):1694–1705. https://doi.org/10.1080/10717544.2018.1501119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Homayun B, Lin X, Choi HJ (2019) Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 11(3)s. https://doi.org/10.3390/pharmaceutics11030129

  7. Padhee K, Chowdhary KA, Pattnaik S, Sahoo SK, Pathak N (2011) Design and development of multiple-unit, extended release drug delivery system of Verapamil HCL by pelletization technique. Int J Drug Dev Res 3(3):118–125

    CAS  Google Scholar 

  8. Chen T, Li J, Chen T, Sun CC, Zheng Y (2017) Tablets of multi-unit pellet system for controlled drug delivery. J Control Release 262:222–231. https://doi.org/10.1016/j.jconrel.2017.07.043

    Article  CAS  PubMed  Google Scholar 

  9. Efentakis M, Koutlis A, Vlachou M (2000) Development and evaluation of oral multiple-unit and single-unit hydrophilic controlled-release systems. AAPS PharmSciTech 1(4)

    Google Scholar 

  10. Uhumwangho M, Okor R (2008) Estimation of the Release profiles of multi-unit dose tablets of theophylline from the release profiles of their components. Trop J Pharm Res 7(2):981–986. https://doi.org/10.4314/tjpr.v7i2.14682

    Article  Google Scholar 

  11. Ramu S, Ramakrishna G, Balaji M, Kondala K, Haranadh S (2013) Multiple unit drug delivery system: pelletization techniques. Am J Adv Drug Deliv 1(1):11–21

    Google Scholar 

  12. Al-Hashimi N, Begg N, Alany RG, Hassanin H, Elshaer A (2018) Oral modified release multiple-unit particulate systems: compressed pellets, microparticles and nanoparticles. Pharmaceutics 10(4). https://doi.org/10.3390/pharmaceutics10040176

  13. Heimy Franceline Martínez Sánchez, AYEL, Méndez-Gómez, E, Vázquez AE, de Jesús Sol Hernández M (2014) Evaluación in Vivo Del Efecto Cicatrizante de Un Gel a Base de Quitosano Obtenido de Exoesqueleto de Camarón Blanco Litopenaeus Vannamei. Rev Colomb Biotecnol 16(1):45–50

    Google Scholar 

  14. Ding H (2012) Modified-release drug products and drug devices. In: Applied biopharmaceutics & pharmacokinetics, pp 567–613

    Google Scholar 

  15. Nayak AK, Pal D (2016) Plant-derived polymers: ionically gelled sustained drug release systems. Encycl Biomed Polym 2016:6002–6017. https://doi.org/10.1081/e-ebpp-120050562

  16. VR K, S S (2018) Multiple unit particle systems (MUPS), a versatile strategy for controlled drug delivery: focus on formulation and process concerns. J Formul Sci Bioavailab 2018 1(1):1–3. https://doi.org/10.4172/2577-0543.1000106

  17. Vishal Y, Satheshkumar S (2019) Current scenario of multiple unit particulate system: a review. Indian J Nov Drug Deliv 11(1):1–12

    Google Scholar 

  18. Zhu X, Qi X, Wu Z, Zhang Z, Xing J, Li X (2014) Preparation of multiple-unit floating-bioadhesive cooperative minitablets for improving the oral bioavailability of famotidine in rats. Drug Deliv 21(6):459–466. https://doi.org/10.3109/10717544.2013.879626

    Article  CAS  PubMed  Google Scholar 

  19. Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A (2013) Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 65(9):1148–1171. https://doi.org/10.1016/j.addr.2013.04.016

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Willför S, Xu C (2015) A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact Carbohydrates Diet Fibre 5(1):31–61. https://doi.org/10.1016/j.bcdf.2014.12.001

    Article  CAS  Google Scholar 

  21. Barclay TG, Day CM, Petrovsky N, Garg S (2019) Review of polysaccharide particle-based functional drug delivery. Carbohydr Polym 221:94–112. https://doi.org/10.1016/j.carbpol.2019.05.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Debele TA, Mekuria SL, Tsai HC (2016) Polysaccharide Based Nanogels in the Drug Delivery System: Application as the Carrier of Pharmaceutical Agents. Mater Sci Eng, C 68:964–981. https://doi.org/10.1016/j.msec.2016.05.121

    Article  CAS  Google Scholar 

  23. Giri TK (2016) Nanoarchitectured polysaccharide-based drug carrier for ocular therapeutics. Elsevier. https://doi.org/10.1016/B978-0-323-47347-7.00005-7

  24. Xie JH, Jin ML, Morris GA, Zha XQ, Chen HQ, Yi Y, Li JE, Wang ZJ, Gao J, Nie SP et al (2016) Advances on bioactive polysaccharides from medicinal plants. Crit Rev Food Sci Nutr 56:S60–S84. https://doi.org/10.1080/10408398.2015.1069255

    Article  CAS  PubMed  Google Scholar 

  25. Exner G, Marudova M, Sotirov S, Marinova A, Viraneva A, Pilicheva B, Bodurov I, Vlaeva I, Uzunova Y, Yovcheva T (2019) Multilayered polyelectrolyte structures with potential for intracavity drug delivery systems. Appl Surf Sci 493:620–627. https://doi.org/10.1016/j.apsusc.2019.07.039

    Article  CAS  Google Scholar 

  26. Stuart MC, de Vries R, Lyklema H (2005) 2 Polyelectrolytes. Fundam. Interface Colloid Sci 5(C):1–84. https://doi.org/10.1016/S1874-5679(05)80006-6

  27. Shchipunov YA, Postnova IV (2009) Water-soluble polyelectrolyte complexes of oppositely charged polysaccharides. Compos Interfaces 16(4):251–279. https://doi.org/10.1163/156855409X447093

    Article  CAS  Google Scholar 

  28. Budd PM Polyelectrolytes, In: Allen G, Booth C, Bevington JC, et al. (Eds.), Polymer characterization, comprehensive polymer science: The synthesis, characterization, reactions & applications of polymers, michigan, Vol .1, 968, Elsevier Science & Technology Books

    Google Scholar 

  29. Coimbra P, Ferreira P, Alves P, Gil MH (2013) Polysaccharide-based polyelectrolyte complexes and polyelectrolyte multilayers for biomedical applications. Carbohydrates Appl Med 661(2):1–29

    Google Scholar 

  30. Sundaramurthy A (2018) Responsive polyelectrolyte multilayer nanofilms for drug delivery applications. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-101997-9.00013-8

  31. Racoviţǎ Ş, Vasiliu S, Popa M, Luca C (2009) Polysaccharides based on micro- and nanoparticles obtained by ionic gelation and their applications as drug delivery systems. Rev Roum Chim 54(9):709–718

    Google Scholar 

  32. Patil P, Chavanke D, Wagh M (2012) A review on ionotropic gelation method: novel approach for controlled gastroretentive gelispheres. Int J Pharm Sci 4(Suppl. 4):27–32

    CAS  Google Scholar 

  33. Lapitsky Y (2014) Ionically crosslinked polyelectrolyte nanocarriers: recent advances and open problems. Curr Opin Colloid Interface Sci 19(2):122–130. https://doi.org/10.1016/j.cocis.2014.03.014

    Article  CAS  Google Scholar 

  34. Hu Q, Luo Y (2018) Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int J Biol Macromol 120:775–782. https://doi.org/10.1016/j.ijbiomac.2018.08.152

    Article  CAS  PubMed  Google Scholar 

  35. Jain A, Thakur K, Sharma G, Kush P, Jain UK (2016) Fabrication, characterization and cytotoxicity studies of ionically cross-linked docetaxel loaded chitosan nanoparticles. Carbohydr Polym 137:65–74. https://doi.org/10.1016/j.carbpol.2015.10.012

  36. Jayasuriya AC (2017) Production of micro- and nanoscale chitosan particles for biomedical applications. Elsevier. https://doi.org/10.1016/B978-0-08-100230-8.00008-X

  37. Crouzier T, Boudou T, Picart C (2010) Polysaccharide-based polyelectrolyte multilayers. Curr Opin Colloid Interface Sci 15(6):417–426. https://doi.org/10.1016/j.cocis.2010.05.007

    Article  CAS  Google Scholar 

  38. Bantchev G, Lu Z, Lvov Y (2009) Layer-by-layer nanoshell assembly on colloids through simplified wash less process. J Nanosci Nanotechnol 9(1):396–403. https://doi.org/10.1166/jnn.2009.J055

    Article  CAS  PubMed  Google Scholar 

  39. Elgadir MA, Uddin MS, Ferdous S, Adam A, Chowdhury AJK, Sarker MZI (2014) Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems : a review. J Food Drug Anal, 1–11. https://doi.org/10.1016/j.jfda.2014.10.008

  40. Ali A, Ahmed S (2018) International journal of biological macromolecules a review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286. https://doi.org/10.1016/j.ijbiomac.2017.12.078

    Article  CAS  PubMed  Google Scholar 

  41. Kleine-Brueggeney H, Zorzi GK, Fecker T, Gueddari NE, El-Moerschbacher BM, Goycoolea FM (2015) A rational approach towards the design of chitosan-based nanoparticles obtained by ionotropic gelation. Colloids Surf B Biointerfaces 135:99–108

    Article  CAS  Google Scholar 

  42. Zou X, Zhao X, Ye L, Wang Q, Li H (2014) Preparation and drug release behavior of PH-responsive Bovine Serum albumin-loaded chitosan microspheres. J Ind Eng Chem 21:1389–1397. https://doi.org/10.1016/j.jiec.2014.06.012

    Article  CAS  Google Scholar 

  43. Ma L, Liu C (2010) Preparation of chitosan microspheres by ionotropic gelation under a high voltage electrostatic field for protein delivery. Colloids Surf B Biointerfaces 75:448–453. https://doi.org/10.1016/j.colsurfb.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  44. Nguyen TV, Thu T, Nguyen H, Wang S, Phuong T, Vo K, Nguyen AD (2017) Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the and a chitosan nanoparticle—Amoxicillin complex. Res Chem Intermed 43(6):3527–3537. https://doi.org/10.1007/s11164-016-2428-8

    Article  CAS  Google Scholar 

  45. Antoniou J, Liu F, Majeed H, Qi J, Yokoyama W, Zhong F (2015) Colloids and surfaces A: physicochemical and engineering aspects physicochemical and morphological properties of size-controlled chitosan—Tripolyphosphate nanoparticles. Colloids Surf A Physicochem. Eng Asp 465:137–146

    Article  CAS  Google Scholar 

  46. Sreekumar S, Goycoolea FM, Moerschbacher, BM, Rivera-rodriguez, GR (2018) Parameters influencing the size of chitosan-TPP nano- and microparticles. Sci Rep, 1–11. https://doi.org/10.1038/s41598-018-23064-4

  47. Auwal SM, Zarei M (2017) Improved in vivo efficacy of anti-hypertensive biopeptides encapsulated in chitosan nanoparticles fabricated by ionotropic gelation on spontaneously hypertensive rats. Nanomaterials 7(421), 1–11. https://doi.org/10.3390/nano7120421

  48. Dustgani A, Vasheghani E, Imani M (2008) Preparation of chitosan nanoparticles loaded by dexamethasone sodium phosphate. Ianian J Pharm Sci 4(2):111–114

    Google Scholar 

  49. Hassani S, Laouini A, Fessi H, Charcosset C (2015) Preparation of chitosan-TPP nanoparticles using microengineered membranes—effect of parameters and encapsulation of tacrine. Colloids Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2015.04.006

    Article  Google Scholar 

  50. Al-nemrawi NK, Alsharif SSM, Alzoubi KH, Rami Q (2019) Preparation and characterization of insulin chitosan-nanoparticles loaded in buccal films. Pharm Dev Technol 24(8):967–974. https://doi.org/10.1080/10837450.2019.1619183

    Article  CAS  PubMed  Google Scholar 

  51. Patel BK, Parikh RH, Aboti PS (2013) Development of oral sustained release Rifampicin loaded chitosan nanoparticles by design of experiment. J. Drug Deliv

    Google Scholar 

  52. Farias da Silva Furtado GT, Bizerra Fideles T, Leal Cruz RCA, de Lima Souza JW, Rodriguez Barbero M, Lia Fook MV (2018) Chitosan/NaF particles prepared via ionotropic gelation: evaluation of particles size and morphology. Mater Res 21(4)

    Google Scholar 

  53. Cho AR, Chun YG, Kim BK, Park DJ (2014) Preparation of Chitosan—TPP microspheres as resveratrol carriers 79(4):568–576. https://doi.org/10.1111/1750-3841.12395

  54. Yuan D, Jacquier JC, Riordan EDO (2017) Entrapment of protein in chitosan-tripolyphosphate beads and its release in an in vitro digestive model. Food Chem 229:495–501. https://doi.org/10.1016/j.foodchem.2017.02.107

    Article  CAS  PubMed  Google Scholar 

  55. Gomathi T, Sudha PN, Florence JAK, Venkatesan J, Sukumaran A (2017) Fabrication of letrozole formulation using chitosan nanoparticles through ionic gelation method. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.01.147

    Article  PubMed  Google Scholar 

  56. Yegappan R, Selvaprithiviraj V, Amirthalingam S, Jayakumar R (2018) Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydr Polym 198:385–400. https://doi.org/10.1016/j.carbpol.2018.06.086

    Article  CAS  PubMed  Google Scholar 

  57. Necas J, Bartosikova L (2013) Carrageenan: a review 4:187–205

    Google Scholar 

  58. Takada A, Kadokawa JI (2015) Fabrication and Characterization of Polysaccharide Ion Gels with Ionic Liquids and Their Further Conversion into Value-Added Sustainable Materials. Biomolecules 5(1):244–262. https://doi.org/10.3390/biom5010244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sedayu BB, Cran MJ, Bigger SW (2019) A Review of Property Enhancement Techniques for Carrageenan-Based Films and Coatings. Carbohydr Polym 216:287–302. https://doi.org/10.1016/j.carbpol.2019.04.021

    Article  CAS  PubMed  Google Scholar 

  60. Zia KM, Tabasum S, Nasif M, Sultan N, Aslam N, Noreen A, Zuber M (2017) A Review on Synthesis, Properties and Applications of Natural Polymer Based Carrageenan Blends and Composites. Int J Biol Macromol 96:282–301. https://doi.org/10.1016/j.ijbiomac.2016.11.095

    Article  CAS  PubMed  Google Scholar 

  61. Liu J, Zhan X, Wan J, Wang Y, Wang C (2015) Review for Carrageenan-Based Pharmaceutical Biomaterials: Favourable Physical Features versus Adverse Biological Effects. Carbohydr Polym 121:27–36. https://doi.org/10.1016/j.carbpol.2014.11.063

    Article  CAS  PubMed  Google Scholar 

  62. Sipahigil O, Dortunc B (2001) Preparation and in vitro evaluation of verapamil HCl and ibuprofen containing carrageenan beads. Int J Pharm 228:119–128. https://doi.org/10.1016/S0378-5173(01)00814-6

  63. Hariyadi DM, Hendradi E, Sharon N (2019) Development of carrageenan polymer for encapsulation of ciprofloxacin HCL : in vitro characterization 9(1):89–93. https://doi.org/10.25258/ijddt.9.1.14

  64. Soukoulis C, Tsevdou M, Andre CM, Cambier S, Yonekura L, Taoukis PS, Hoffmann L (2017) Modulation of Chemical Stability and in Vitro Bioaccessibility of Beta-Carotene Loaded in Kappa-Carrageenan Oil-in-Gel Emulsions. Food Chem 220:208–218. https://doi.org/10.1016/j.foodchem.2016.09.175

    Article  CAS  PubMed  Google Scholar 

  65. Leong KH (2011) Carboxymethylation of Kappa-Carrageenan for Intestinal-Targeted Delivery of Bioactive Macromolecules

    Google Scholar 

  66. Wasiak I, Kulikowska A, Janczewska M, Michalak M, Cymerman IA, Nagalski A, Kallinger P, Szymanski WW, Ciach T (2016) Dextran Nanoparticle Synthesis and Properties. PLoS ONE 11(1):1–17. https://doi.org/10.1371/journal.pone.0146237

    Article  CAS  Google Scholar 

  67. Kutscher M, Sin W, Werner V, Lorenz U, Ohlsen K, Meinel L, Hadinoto K, Germershaus O (2015) Influence of Salt Type and Ionic Strength on Self-Assembly of Dextran Sulfate-Ciprofloxacin Nanoplexes. Int J Pharm 486(1–2):21–29. https://doi.org/10.1016/j.ijpharm.2015.03.022

    Article  CAS  PubMed  Google Scholar 

  68. Quadrado RFN, Fajardo AR (2018) Microparticles Based on Carboxymethyl Starch/Chitosan Polyelectrolyte Complex as Vehicles for Drug Delivery Systems. Arab. J. Chem. https://doi.org/10.1016/j.arabjc.2018.04.004

    Article  Google Scholar 

  69. Lin WC, Yu DG, Yang MC (2005) PH-Sensitive Polyelectrolyte Complex Gel Microspheres Composed of Chitosan/Sodium Tripolyphosphate/Dextran Sulfate: Swelling Kinetics and Drug Delivery Properties. Colloids Surfaces B Biointerfaces 44(2–3):143–151. https://doi.org/10.1016/j.colsurfb.2005.06.010

    Article  CAS  PubMed  Google Scholar 

  70. Gatti THH, Eloy JO, Ferreira LMB, Da Silva IC, Pavan FR, Gremião MPD, Chorilli M (2018) Insulin-Loaded Polymeric Mucoadhesive Nanoparticles: Development, Characterization and Cytotoxicity Evaluation. Brazilian J. Pharm. Sci. 54(1):1–10. https://doi.org/10.1590/s2175-97902018000117314

    Article  CAS  Google Scholar 

  71. Chavan C, Bala P, Pal K, Kale SN (2017) Cross-Linked Chitosan-Dextran Sulphate Vehicle System for Controlled Release of Ciprofloxaxin Drug: An Ophthalmic Application. OpenNano 2:28–36. https://doi.org/10.1016/j.onano.2017.04.002

    Article  Google Scholar 

  72. Unagolla JM, Jayasuriya AC (2018) Drug Transport Mechanisms and in Vitro Release Kinetics of Vancomycin Encapsulated Chitosan-Alginate Polyelectrolyte Microparticles as a Controlled Drug Delivery System. Eur J Pharm Sci 114:199–209. https://doi.org/10.1016/j.ejps.2017.12.012

    Article  CAS  PubMed  Google Scholar 

  73. Akolade JO, Oloyede HOB, Onyenekwe PC (2017) Encapsulation in Chitosan-Based Polyelectrolyte Complexes Enhances Antidiabetic Activity of Curcumin. J. Funct. Foods 35:584–594. https://doi.org/10.1016/j.jff.2017.06.023

    Article  CAS  Google Scholar 

  74. Xu Y, Zhan C, Fan L, Wang L, Zheng H (2007) Preparation of Dual Crosslinked Alginate-Chitosan Blend Gel Beads and in Vitro Controlled Release in Oral Site-Specific Drug Delivery System. Int J Pharm 336(2):329–337. https://doi.org/10.1016/j.ijpharm.2006.12.019

    Article  CAS  PubMed  Google Scholar 

  75. Mcintosh M, Stone BA, Stanisich VA (2005) Curdlan and Other Bacterial (1 → 3)- β -. Appl Microbiol Biotechnol 1:163–173. https://doi.org/10.1007/s00253-005-1959-5

    Article  CAS  Google Scholar 

  76. Yan JK, Wang YY, Qiu WY, Wu JY (2017) Construction and Characterization of Nanosized Curdlan Sulfate/Chitosan Polyelectrolyte Complex toward Drug Release of Zidovudine. Carbohydr Polym 174:209–216. https://doi.org/10.1016/j.carbpol.2017.06.082

    Article  CAS  PubMed  Google Scholar 

  77. Chen L, Zheng Y, Feng L, Liu Z, Guo R, Zhang Y (2019) Novel Hyaluronic Acid Coated Hydrophobically Modified Chitosan Polyelectrolyte Complex for the Delivery of Doxorubicin. Int J Biol Macromol 126:254–261. https://doi.org/10.1016/j.ijbiomac.2018.12.215

    Article  CAS  PubMed  Google Scholar 

  78. Paini M, Aliakbarian B, Casazza AA, Perego P, Ruggiero C, Pastorino L (2015) Chitosan/ Dextran Multilayer Microcapsules for Polyphenol Co-Delivery. Mater Sci Eng, C 46:374–380

    Article  CAS  Google Scholar 

  79. Anirudhan T, Sekhar C, Vijayamma A (2017) Layer-by-Layer Assembly of Hyaluronic Acid/Carboxymethylchitosan Polyelectrolytes on the Surface of Aminated Mesoporous Silica for the Oral Delivery of 5-Fluorouracil. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2017.06.033

    Article  Google Scholar 

  80. Zhang Y, Chi C, Huang X, Zou Q, Li X, Chen L (2017) Starch-Based Nanocapsules Fabricated through Layer-by-Layer Assembly for Oral Delivery of Protein to Lower Gastrointestinal Tract Highlights. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2017.04.090

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rochin-Wong S, Rosas-Durazo A, Zavala-Rivera P, Maldonado A, Martínez-Barbosa ME, Vélaz I, Tánori J (2018) Drug Release Properties of Diflunisal from Layer-By- Nanocapsules: Effect of Deposited Layers. Polymers (Basel) 10(760):1–16. https://doi.org/10.3390/polym10070760

    Article  CAS  Google Scholar 

  82. Jeon S, Yoo CY, Park SN (2015) Colloids and Surfaces B: Biointerfaces Improved Stability and Skin Permeability of Sodium Hyaluronate-Chitosan Multilayered Liposomes by Layer-by-Layer Electrostatic Deposition for Quercetin Delivery. Colloids Surfaces B Biointerfaces 129:7–14. https://doi.org/10.1016/j.colsurfb.2015.03.018

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Carvajal-Millan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Figueroa-Pizano, M.D., Carvajal-Millan, E. (2021). Ionically Gelled Polysaccharide-Based Multiple-Units in Drug Delivery. In: Nayak, A.K., Hasnain, M.S., Pal, D. (eds) Ionically Gelled Biopolysaccharide Based Systems in Drug Delivery. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-2271-7_8

Download citation

Publish with us

Policies and ethics