Skip to main content

Cooperative Predictive Maintenance of Two-Component System with Limited Resources

  • Chapter
  • First Online:
Residual Life Prediction and Optimal Maintenance Decision for a Piece of Equipment

Abstract

Preventive maintenance is an effective means to keep the system reliability above a satisfactory level, prolong the service life of equipment and reduce the failure rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fan HD, Xu ZG, Chen SW (2015) Optimally maintaining a multi-state system with limited imperfect preventive repairs. Int J Syst Sci 46(10):1729–1740

    Google Scholar 

  2. Chen MY, Fan HD, Hu CH et al (2014) Maintaining partially observed systems with imperfect observation and resource constraint. IEEE Trans Reliab 63(4):881–890

    Article  Google Scholar 

  3. Fan H, Zhou Z, Yang W (2015) Optimal maintenance policy for partially observable systems under imperfect maintenance. J Shanghai Instit Technol (Natural Science Edition) 15(2):102–106

    Google Scholar 

  4. Fan H, Hu C, Chen M et al. (2011) Preventive maintenance with competitive failure and incomplete maintenance. J Nanjing Univers Sci Technol 7(5)(sp2):29–33

    Google Scholar 

  5. Fan H, Changhua Hu, Chen M et al (2009) Support method for optimal predictive maintenance decision based on degradation data. J Huazhong Univers Sci Technol (Natural Science Edition) 8(sp1):45–50

    Google Scholar 

  6. Fan HD, Hu CH, Chen MY et al. (2009) Predictive condition-based replacement and spare ordering policy for dynamic systems suffering hidden degradation. In: IFAC symposium on fault detection, supervision and safety of technical processes. Sants Hotel, Spain, pp 1623-1628

    Google Scholar 

  7. Lin D, Zuo M, Yam R (2001) Sequential imperfect preventive maintenance models with two categories of failure modes. Nav Res Logist 48(2):172–183

    Article  MathSciNet  Google Scholar 

  8. Murthy DNP, Nguyen DG (1985) Study of two-component system with failure interaction. Naval Res Logistics Quarter 32(2):239–247

    Article  MathSciNet  Google Scholar 

  9. Scarf PA, Deara M (1998) On the development and application of maintenance policies for a two-component system with failure dependence. IMA J Manag Math 9(2):91–107

    Article  Google Scholar 

  10. Scarf PA, Deara M (2002) Block replacement policies for a two-component system with failure dependence. Nav Res Logist 50(1):70–87

    Article  MathSciNet  Google Scholar 

  11. Nakagawa T, Murthy DNP (1993) Optimal replacement policies for a two-unit system with failure interactions. RAIRO Recherche Opérationnelle 27(4):427–438

    MathSciNet  MATH  Google Scholar 

  12. Lai MT, Chen YC (2006) Optimal periodic replacement policy for a two-unit system with failure rate interaction. Int J Adv Manuf Technol 29(3):367–371

    Article  Google Scholar 

  13. El-Ferik S, Ben-Daya M (2006) Age-based hybrid model for imperfect preventive maintenance. IIE Trans 38(4):365–375

    Article  Google Scholar 

  14. Zequeira RI, Berenguer C (2006) Periodic imperfect preventive maintenance with two categories of competing failure modes. Reliab Eng Syst Saf 91(4):460–468

    Article  Google Scholar 

  15. Aven T, Castro I (2008) A minimal repair replacement model with two types of failure and a safety constraint. Eur J Oper Res 188(2):506–515

    Article  MathSciNet  Google Scholar 

  16. Castro IT (2009) A model of imperfect preventive maintenance with dependent failure modes. Eur J Oper Res 196(1):217–224

    Article  MathSciNet  Google Scholar 

  17. Murthy DNP, Nguyen DG (1985) Study of a multi-component system with failure interaction. Eur J Oper Res 21(3):330–338

    Article  Google Scholar 

  18. Satow T, Osaki S (2003) Optimal replacement policies for a two-unit system with shock damage interaction. Comput Math Appl 46(7):1129–1138

    Article  MathSciNet  Google Scholar 

  19. Zequeira R, Bérenguer C (2006) Periodic imperfect preventive maintenance with two categories of competing failure modes. Reliab Eng Syst Saf 91(4):460–468

    Article  Google Scholar 

  20. US Department of Defense (1991) MIL-HDBK-217F Reliability prediction of electronic equipment. US Department of Defense, Washington DC

    Google Scholar 

  21. Barlow R, Hunter L (1960) Optimum preventive maintenance policies. Oper Res 8(1):90–100

    Article  MathSciNet  Google Scholar 

  22. Lin D, Zuo MJ, Yam RCM (2000) General sequential imperfect preventive maintenance. Int J Reliab Qual Saf Eng 7(3):253–266

    Article  Google Scholar 

  23. Wu S, Zuo M (2010) Linear and nonlinear preventive maintenance models. IEEE Trans Reliab 59(1):242–249

    Article  Google Scholar 

  24. Liu Y, Huang H, Zhang X (2012) A data-driven approach to selecting imperfect maintenance models. IEEE Trans Reliab 61(1):101–112

    Article  Google Scholar 

  25. Fan HD, Hu CH, Chen MY et al (2011) Cooperative predictive maintenance of repairable systems with dependent failure modes and resource constraint. IEEE Trans Reliab 60(1):144–157

    Article  Google Scholar 

  26. Li L, Asme M, You M et al (2009) Reliability-based dynamic maintenance threshold for failure prevention of continuously monitored degrading systems. J Manuf Sci Eng 131(3):1010–1018

    Google Scholar 

  27. Kim Y, Kolarik W (1992) Real-time conditional reliability prediction from online tool performance data. Int J Prod Res 30(8):1831–1844

    Article  Google Scholar 

  28. Lu S, Tu Y, Lu H (2007) Predictive condition-based maintenance for continuously deteriorating systems. Qual Reliab Eng Int 23(1):71–81

    Article  Google Scholar 

  29. Chinnam R (1999) On-line reliability estimation of individual components using degradation signals. IEEE Trans Reliab 48(4):403–412

    Article  Google Scholar 

  30. Lu H, Kolarik W, Lu S (2001) Real-time performance reliability prediction. IEEE Trans Reliab 50(4):353–357

    Article  Google Scholar 

  31. Xu Z, Ji Y, Zhou D (2008) Real-time reliability prediction for a dynamic system based on the hidden degradation process identification. IEEE Trans Reliab 57(2):230–242

    Article  Google Scholar 

  32. Nakagawa T (2005) Maintenance theory of reliability. Springer, London

    Google Scholar 

  33. Lu S, Lu H, Kolarik W (2001) Multivariate performance reliability prediction in realtime. Reliab Eng Syst Safety 72(1):39–45

    Article  Google Scholar 

  34. Cao J, Cheng K (2006) Introduction to reliability mathematics. Higher Education Press, Beijing

    Google Scholar 

  35. Nakagawa T (1986) Periodic and sequential preventive maintenance policies. J Appl Probab 23(2):536–542

    Article  MathSciNet  Google Scholar 

  36. Zhang F, Jardine AKS (1998) Optimal maintenance models with minimal repair periodic overhaul and complete renewal. IIE Trans 30(12):1109–1119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 National Defense Industry Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, C., Fan, H., Wang, Z. (2022). Cooperative Predictive Maintenance of Two-Component System with Limited Resources. In: Residual Life Prediction and Optimal Maintenance Decision for a Piece of Equipment. Springer, Singapore. https://doi.org/10.1007/978-981-16-2267-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2267-0_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2266-3

  • Online ISBN: 978-981-16-2267-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics