Skip to main content

Abstract

With the high-tech development and increasing global competitions, the modern industrialization process intends to be more and more extensive and complex

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou D, Ye Y (2000) Modern fault diagnosis and fault-tolerant control. Tsinghua University Press, Beijing

    Google Scholar 

  2. National Transportation Safety Board (1999) Uncontrolled Descent and Collision with Tarrain USAir Flight 427 Boeing 737-300, N513AU Near Aliquippa, Pennsylvania, September, 1994: Aircraft Accident Report, A850073. National Technical Information Service, Springfield

    Google Scholar 

  3. Zhengguo Xu (2008) Real-time prediction method of dynamic system reliability. Tsinghua University, Beijing

    Google Scholar 

  4. Chu C, Proth JM, Wolff P (1998) Predictive maintenance: the one-unit replacement model. Int J Prod Econ 54(3):285–295

    Article  Google Scholar 

  5. Mobley RK (2002) An introduction to predictive maintenance. Elsevier Butterworth-Heinemann, Burlington, MA

    Google Scholar 

  6. Shao X, Cao L, Tian G et al (2013) Prognostic and health management technology for complex equipment. National Defense Industry Press, Beijing

    Google Scholar 

  7. Cui LR, Loh HT, Xie M (2004) Sequential inspection strategy for multiple systems under availability requirement. Eur J Oper Res 155:170–177

    Article  MathSciNet  MATH  Google Scholar 

  8. Lee J, Ni J, Djurdjanovic D et al (2006) Intelligent prognostics and e-maintenance. Comput Ind 57:476–489

    Article  Google Scholar 

  9. Wang W (2007) A two-stage prognosis model in condition based maintenance. Eur J Oper Res 182:1177–1187

    Article  MATH  Google Scholar 

  10. Wang W (2007) A prognosis model for wear prediction based oil-based monitoring. J Oper Res Soc 58:887–893

    Article  MATH  Google Scholar 

  11. Wang W, Zhang W (2008) An asset residual life prediction model based on expert judgments. Eur J Oper Res 188:496–505

    Article  MathSciNet  MATH  Google Scholar 

  12. Jardine AKS, Lin D, Banjevic D (2006) A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Process 20(7):1483–1510

    Article  Google Scholar 

  13. Si XS, Wang W, Hu CH et al (2011) Remaining useful life estimation—a review on the statistical data driven approaches. Eur J Oper Res 213:1–14

    Article  MathSciNet  Google Scholar 

  14. Hu CH, Zhou ZJ, Zhang JX et al (2015) A survey on life prediction of equipment. Chin J Aeronaut 28(1):25–33

    Article  Google Scholar 

  15. Tanaka K, Mura T (1981) A dislocation model for fatigue crack initiation. J Appl Mech 48(1):97–103

    Article  MATH  Google Scholar 

  16. Mou Y, Shan Lu (2013) Numerical simulation of Fatigue-crack-initiation life for turbine disk based on material microcosmic characteristics. Acta Aeronautica et Astronautica Sinica 34(2):282–290

    Google Scholar 

  17. CALCE Electronic Products and Systems Center (2006) Reliability prediction of electronic parts and products. University of Maryland, College Park (MD). Report No.: MD20742

    Google Scholar 

  18. Chen Y, Xie W, Zeng S (2008) Functional analysis and physics of failure associated reliability prediction. Acta Aeronautica et Astronautica Sinica 29(5):1133–1138

    Google Scholar 

  19. Zhang CH, Wen XS, Chen X (2004) A comprehensive review of accelerated life testing. Acta Armamentarii 25(4):485–490

    Google Scholar 

  20. Pan W (1997) Application of environmental factor method in ammunition storage reliability evaluation. J Projectiles, Rockets, Missiles and Guidance 3:26–30

    Google Scholar 

  21. Hong D, Xiaobing M, Zhao Y et al (2010) Environment referring factor based on proportional hazards model. J Beijing Univer Aeronaut Astronaut 36(4):443–446

    Google Scholar 

  22. Marshall AW, Olkin I (2007) Life distributions. Springer, New York

    MATH  Google Scholar 

  23. Lu CJ, Meeker WQ (1993) Using degradation measures to estimate a time-to-failure distribution. Technometrics 35(2):161–174

    Article  MathSciNet  MATH  Google Scholar 

  24. Lu JC, Park J, Yang Q (1997) Statistical inference of a time-to-failure distribution derived from linear degradation data. Technometrics 39(4):391–400

    Article  MATH  Google Scholar 

  25. Tseng ST, Tang J, Ku IH (2003) Determination of burn-in parameters and residual life for highly reliable products. Nav Res Logist 50(1):1–14

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang W (2000) A model to determine the optimal critical level and the monitoring intervals in condition-based maintenance. Int J Prod Res 38(6):1425–1436

    Article  MATH  Google Scholar 

  27. Bae SJ, Kvam PH (2004) A nonlinear random-coefficients model for degradation testing. Technometrics 46(4):460–469

    Article  MathSciNet  Google Scholar 

  28. Gebraeel NZ, Lawley MA, Li R et al (2005) Residual-life distributions from component degradation signals: a Bayesian approach. IIE Trans 37(6):543–557

    Article  Google Scholar 

  29. Elwany A, Gebraeel N (2009) Real-time estimation of mean remaining life using sensor-based degradation models. J Manuf Sci Eng 131(5). 051005-1-051005-9

    Google Scholar 

  30. Gebraeel N, Pan J (2008) Prognostic degradation models for computing and updating residual life distributions in a time-varying environment. Reliab, IEEE Trans 57(4):539–550

    Article  Google Scholar 

  31. Gebraeel N (2006) Sensory-updated residual life distributions for components with exponential degradation patterns. IEEE Trans Autom Sci Eng 3(4):382–393

    Article  Google Scholar 

  32. Park JI, Bae SJ (2010) Direct prediction methods on lifetime distribution of organic light-emitting diodes from accelerated degradation tests. IEEE Trans Reliab 59(1):74–90

    Article  Google Scholar 

  33. Abdel-Hameed M (1975) A Gamma wear process. IEEE Trans Reliab 24(2):152–153

    Article  Google Scholar 

  34. Wang W, Christer AH (2000) Towards a general condition based maintenance model for a stochastic dynamic system. J Oper Res Soc 51:145–155

    Article  MATH  Google Scholar 

  35. Bagdonavicius V, Nikulin MS (2001) Estimation in degradation models with explanatory variables. Lifetime Data Anal 7(1):85–103

    Article  MathSciNet  MATH  Google Scholar 

  36. Lawless J, Crowder M (2004) Covariates and random effects in a Gamma process model with application to degradation and failure. Lifetime Data Anal 10(3):213–227

    Article  MathSciNet  MATH  Google Scholar 

  37. Van Noortwijk JM (2009) A survey of the application of Gamma processes in maintenance. Reliab Eng Syst Saf 94(1):2–21

    Article  Google Scholar 

  38. Wasan MT (1968) On an inverse Gaussian process. Scand Actuar J 1968(1–2):69–96

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang X, Xu D (2010) An inverse Gaussian process model for degradation data. Technometrics 52(2):188–197

    Article  MathSciNet  Google Scholar 

  40. Kharoufeh JP (2003) Explicit results for wear processes in a Markovian environment. Oper Res Lett 31(3):237–244

    Article  MathSciNet  MATH  Google Scholar 

  41. Kharoufeh JP, Sipe JA (2005) Evaluating failure time probabilities for a Markovian wear process. Comput Oper Res 32(5):1131–1145

    Article  MATH  Google Scholar 

  42. Kharoufeh JP, Mixon DG (2009) On a Markov-modulated shock and wear process. Nav Res Logistics (NRL) 56(6):563–576

    Article  MathSciNet  MATH  Google Scholar 

  43. Kharoufeh JP, Cox SM, Oxley ME (2013) Reliability of manufacturing equipment in complex environments. Ann Oper Res 209(1):1–24

    Article  MathSciNet  MATH  Google Scholar 

  44. Lee MLT, Whitmore GA, Rosner BA (2010) Threshold regression for survival data with time-varying covariates. Stat Med 29(7–8):896–905

    Article  MathSciNet  Google Scholar 

  45. Wang W (2007) A two-stage prognosis model in condition based maintenance. Eur J Oper Res 182(3):1177–1187

    Article  MATH  Google Scholar 

  46. Wang W, Zhang W (2008) An asset residual life prediction model-based on expert judgments. Eur J Oper Res 188(2):496–505

    Article  MathSciNet  MATH  Google Scholar 

  47. Cox DR (1972) Regression models and life-tables. J Roy Stat Soc B 34(2):187–220

    MathSciNet  MATH  Google Scholar 

  48. Jardine AKS, Banjevic D, Montgomery N et al (2008) Repairable system reliability: recent developments in CBM optimization. Int J Performability Eng 4(3):205–214

    Google Scholar 

  49. Bunks C, McCarthy D, AL-Ani T (2000) Condition-based maintenance of machines using hidden Markov models. Mech Syst Signal Proc 14(4):597–612

    Article  Google Scholar 

  50. Baruah P, Chinnam RB (2005) HMMs for diagnostics and prognostics in machining processes. Int J Prod Res 43(6):1275–1293

    Article  MATH  Google Scholar 

  51. Dong M, He D (2007) Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis. Eur J Oper Res 178(3):858–878

    Article  MathSciNet  MATH  Google Scholar 

  52. Dong M, He D (2007) A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology. Mech Syst Signal Process 21(5):2248–2266

    Article  MathSciNet  Google Scholar 

  53. Liu Q, Dong M, Peng Y (2012) A novel method for online health prognosis of equipment based on hidden semi-Markov model using sequential Monte Carlo methods. Mech Syst Signal Process 32:331–348

    Article  Google Scholar 

  54. Pettit LI, Young KDS (1999) Bayesian analysis for inverse Gaussian lifetime data with measures of degradation. J Stat Comput Simul 63(3):217–234

    Article  MathSciNet  MATH  Google Scholar 

  55. Lee MY, Tang J (2007) A modified EM-algorithm for estimating the parameters of inverse Gaussian distribution based on time censored Wiener degradation data. Stat Sin 17(3):873–893

    MathSciNet  MATH  Google Scholar 

  56. Malik, DF (1976) Storage reliability of missile material program: storage analysis summary report. Raytheon Company, Huntsville al life cycle analysis group. Report No.: ADA026275.

    Google Scholar 

  57. Hou X (1997) Summary of foreign missile storage reliability techniques. Qual Reliab 4:44–46

    Google Scholar 

  58. van Dorp JR, Mazzuchi TA, Fornell GE et al (1996) A Bayes approach to step-stress accelerated life testing. IEEE Trans Reliab 45(3):491–498

    Article  Google Scholar 

  59. Zhou X, Yao J, Zhang J (2012) Dirichlet analysis method for the accelerated storage test of electronic machine. Acta Aeronautica et Astronautica Sinica 33(7):1305–1311

    Google Scholar 

  60. Nelson W (1981) Analysis of performance-degradation data from accelerated tests. IEEE Trans Reliab 30(2):149–155

    Article  MATH  Google Scholar 

  61. Padgett WJ, Tomlinson MA (2004) Inference from accelerated degradation and failure data based on Gaussian process models. Lifetime Data Anal 10(2):191–206

    Article  MathSciNet  MATH  Google Scholar 

  62. State Bureau of Technical Supervision (1994) GB/T3187–94 Reliability and maintainability terms. Standards Press of China, Beijing

    Google Scholar 

  63. Stephens M (2004) Productivity and reliability-based maintenance management. Purdue University Press, Indiana

    Google Scholar 

  64. Heng A, Zhang S, Tan A et al (2009) Rotating machinery prognostics: state of the art, challenges and opportunities. Mech Syst Signal Process 23(3):724–739

    Article  Google Scholar 

  65. Wang J (2004) Study on maintenance scheduling of generating units in the electricity market environment. China Agric Univ, Beijing

    Google Scholar 

  66. Christer A (1999) Developments in delay time analysis for modelling plant maintenance. J Oper Res Soc 50(11):1120–1137

    Article  MATH  Google Scholar 

  67. Zhang Y (2001) Equipment management and maintenance in German enterprises. China Plant Eng 12:50–52

    Google Scholar 

  68. Bevilacqua M, Braglia M (2000) The analytic hierarchy process applied to maintenance policy selection. Reliab Eng Syst Saf 70(1):71–83

    Article  Google Scholar 

  69. Ghasemi A, Yacout S, Ouali M (2007) Optimal condition based maintenance with imperfect information and the proportional hazards model. Int J Prod Res 45(4):989–1012

    Article  MATH  Google Scholar 

  70. Lianghua X, Xisheng J, Yuli L (2006) Development trend and characteristics of CBM System. In: Zhixin W, Min Z (eds) Proceedings of the first international conference on maintenance engineering. Science Press, Beijing

    Google Scholar 

  71. Chen X (2003) Modern maintenance theory. National Defense Industry Press, Beijing

    Google Scholar 

  72. Morse P (1958) Queues, inventories and maintenance. Iohn Wiley & Sons, New York

    Book  Google Scholar 

  73. Barlow R, Hunter L (1960) Optimum preventive maintenance policies. Oper Res 8(1):90–100

    Article  MathSciNet  MATH  Google Scholar 

  74. Barlow R, Proschan F (1965) Mathematical theory of reliability. Wiley & Sons, New York

    MATH  Google Scholar 

  75. Nakagawa T (1979) Optimum policies when preventive maintenance is imperfect. IEEE Trans Reliab 28(4):331–332

    Article  MATH  Google Scholar 

  76. Valdez-Flores C, Feldman R (1989) A survey of preventive maintenance models for stochastically deteriorating single-unit systems. Nav Res Logist 36(4):419–446

    Article  MathSciNet  MATH  Google Scholar 

  77. Pham H, Wang H (1996) Imperfect maintenance. Eur J Oper Res 94(3):425–438

    Article  MATH  Google Scholar 

  78. Scarf P, Cavalcante C, Dwight R et al (2009) An age-based inspection and replacement policy for heterogeneous items. IEEE Trans Reliab 58(4):1–8

    Article  Google Scholar 

  79. Berg M, Epstein B (1976) A modified block replacement policy. Nav Res Logistics Q 23(1):15–24

    Article  MathSciNet  MATH  Google Scholar 

  80. Tango T (1978) Extended block replacement policy with used items. J Appl Probab 15(3):560–572

    Article  MathSciNet  MATH  Google Scholar 

  81. Brezavscek A, Hudoklin A (2003) Joint optimization of block-replacement and periodic-review spare-provisioning policy. IEEE Trans Reliab 52(1):112–117

    Article  Google Scholar 

  82. Huang R, Meng L, Xi L et al (2008) Modeling and analyzing a joint optimization policy of block-replacement and spare inventory with random-leadtime. IEEE Trans Reliab 57(1):113–124

    Article  Google Scholar 

  83. Nakagawa T (1980) A summary of imperfect preventive maintenance policies with minimal repair. RAIRO Oper Res 14(3):249–255

    Article  MathSciNet  MATH  Google Scholar 

  84. Nakagawa T (1981) A summary of periodic replacement with minimal repair at failure. J Oper Res Soc Jpn 24(3):213–227

    MATH  Google Scholar 

  85. Nakagawa T (1981) Modified periodic replacement with minimal repair at failure. IEEE Trans Reliab 30(2):165–168

    Article  MATH  Google Scholar 

  86. Chun Y (1992) Optimal number of periodic preventive maintenance operations under warranty. Reliab Eng Syst Saf 37(3):223–225

    Article  Google Scholar 

  87. Wang H, Pham H (1999) Some maintenance models and availability with imperfect maintenance in production systems. Ann Oper Res 91:305–318

    Article  MathSciNet  MATH  Google Scholar 

  88. Bergman B (1978) Optimal replacement under a general failure model. Adv Appl Probab 10(2):431–451

    Article  MathSciNet  MATH  Google Scholar 

  89. Jayabalan V, Chaudhuri D (1992) Cost optimization of maintenance scheduling for a system with assured reliability. IEEE Trans Reliab 41(1):21–25

    Article  MATH  Google Scholar 

  90. Jayabalan V, Chaudhuri D (2006) Optimal maintenance and replacement policy for a deteriorating system with increased mean downtime. Nav Res Logist (NRL) 39(1):67–78

    Google Scholar 

  91. Lie C, Chun Y (1986) An algorithm for preventive maintenance policy. IEEE Trans Reliab 35(1):71–75

    Article  MATH  Google Scholar 

  92. Lin D, Zuo M, Yam R (2001) Sequential imperfect preventive maintenance models with two categories of failure modes. Nav Res Logist 48(2):172–183

    Article  MathSciNet  MATH  Google Scholar 

  93. Barlow R, Proschan F (1962) Planned replacement. In: Arrow KJ (ed) Studies in applied probability and management science. Stanford University Press, California, pp 63–87

    Google Scholar 

  94. Nakagawa T (1986) Periodic and sequential preventive maintenance policies. J Appl Probab 23(2):536–542

    Article  MathSciNet  MATH  Google Scholar 

  95. Nakagawa T (1988) Sequential imperfect preventive maintenance policies. IEEE Trans Reliab 37(3):295–298

    Article  MATH  Google Scholar 

  96. Beichelt F (1982) A replacement policy based on limits for the repair cost rate. IEEE Trans Reliab 31(4):401–403

    Article  MATH  Google Scholar 

  97. Yun W, Bai D (1988) Repair cost limit replacement policy under imperfect inspection. Reliab Eng Syst Saf 23(1):59–64

    Article  Google Scholar 

  98. Nakagawa T, Osaki S (1974) The optimum repair limit replacement policies. Operational Research Quarterly (1970–1977) 25(2):311–317

    Google Scholar 

  99. Jardine A, Makis V, Banjevic D et al (1998) A decision optimization model for condition-based maintenance. J Qual Maint Eng 4(2):115–121

    Article  Google Scholar 

  100. Vlok P, Coetzee J, Banjevic D et al (2002) Optimal component replacement decisions using vibration monitoring and the proportional-hazards model. J Oper Res Soc 53(2):193–202

    Article  MATH  Google Scholar 

  101. Samrout M, Chatelet E, Kouta R et al (2009) Optimization of maintenance policy using the proportional hazard model. Reliab Eng Syst Saf 94(1):44–52

    Article  Google Scholar 

  102. Ma L, Mathew J, Sun Y et al (2006) Mechanical systems hazard estimation using condition monitoring. Mech Syst Signal Process 20(5):1189–1201

    Article  Google Scholar 

  103. Grall A, Bérenguer C, Dieulle L (2002) A condition-based maintenance policy for stochastically deteriorating systems. Reliab Eng Syst Saf 76(2):167–180

    Article  Google Scholar 

  104. Grall A, Dieulle L, Bérenguer C et al (2002) Continuous-time predictivemaintenance scheduling for a deteriorating system. IEEE Trans Reliab 51(2):141–150

    Article  Google Scholar 

  105. Castanier B, Bérenguer C, Grall A (2003) A sequential condition-based repair/replacement policy with non-periodic inspections for a system subject to continuous wear. Appl Stochastic Models Data Anal 19(4):327–347

    Article  MathSciNet  MATH  Google Scholar 

  106. Dieulle L, Berenguer C, Grall A et al (2003) Sequential condition-based maintenance scheduling for a deteriorating system. Eur J Oper Res 150(2):451–461

    Article  MathSciNet  MATH  Google Scholar 

  107. Liao H, Elsayed E, Chan L (2006) Maintenance of continuously monitored degrading systems. Eur J Oper Res 175(2):821–835

    Article  MATH  Google Scholar 

  108. Monplaisir M, Arumugadasan N (1994) Maintenance decision support: analysing crankcase lubricant condition by Markov process modelling. J Oper Res Soc 45(5):509–518

    Article  Google Scholar 

  109. Amari S, Mclaughlin L (2004) Optimal design of a condition-based maintenance model. In: Reliability and maintainability, 2004 annual symposium-RAMS. IEEE, Los Angeles, CA, USA. New York, pp 528–533

    Google Scholar 

  110. Chen D, Trivedi K (2005) Optimization for condition-based maintenance with semi-Markov decision process. Reliab Eng Syst Saf 90(1):25–29

    Article  Google Scholar 

  111. Wijnmalen D, Hontelez J (1997) Coordinated condition-based repair strategies for components of a multi-component maintenance system with discounts. Eur J Oper Res 98(1):52–63

    Article  MATH  Google Scholar 

  112. Glazebrook K, Mitchell H, Ansell P (2005) Index policies for the maintenance of a collection of machines by a set of repairmen. Eur J Oper Res 165(1):267–284

    Article  MathSciNet  MATH  Google Scholar 

  113. Zhou D, Zhengguo Xu (2008) Real-time reliability evaluation and prediction techniques for engineering systems. Aerosp Control Appl 34(4):3–10

    Google Scholar 

  114. Barata J, Soares C, Marseguerra M et al (2002) Simulation modelling of repairable multi-component deteriorating systems for‘on condition’maintenance optimisation. Reliab Eng Syst Saf 76(3):255–264

    Article  Google Scholar 

  115. Wang L (2006) Research on the theory and application of maintenance decision model and method. Zhejiang University, Hangzhou

    Google Scholar 

  116. Christer A, Wang W, Sharp J (1997) A state space condition monitoring model for furnace erosion prediction and replacement. Eur J Oper Res 101(1):1–14

    Article  MATH  Google Scholar 

  117. Lu S, Tu Y, Lu H (2007) Predictive condition-based maintenance for continuously deteriorating systems. Qual Reliab Eng Int 23(1):71–81

    Article  Google Scholar 

  118. Cadini F, Zio E, Avram D (2009) Model-based Monte Carlo state estimation for condition-based component replacement. Reliab Eng Syst Saf 94(3):752–758

    Article  Google Scholar 

  119. Kaiser K, Gebraeel N (2009) Predictive maintenance management using sensor-based degradation models. IEEE Trans Syst Man Cybern Part A Syst Hum 39(4):840–849

    Article  Google Scholar 

  120. Elwany A, Gebraeel N (2008) Sensor-driven prognostic models for equipment replacement and spare parts inventory. IIE Trans 40(7):629–639

    Article  Google Scholar 

  121. Li L, Asme M, You M et al (2009) Reliability-based dynamic maintenance threshold for failure prevention of continuously monitored degrading systems. J Manuf Sci Eng 131(3):1010–1018

    Google Scholar 

  122. Sun J, Li L, Xi L (2012) Modified two-Stage degradation model for dynamic maintenance threshold calculation considering uncertainty. IEEE Trans Autom Sci Eng 9(1):209–212

    Article  Google Scholar 

  123. Zhou X, Xi L, Lee J (2007) Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation. Reliab Eng Syst Saf 92(4):530–534

    Article  Google Scholar 

  124. You MY, Li L, Meng G et al (2010) Cost-effective updated sequential predictive maintenance policy for continuously monitored degrading systems. IEEE Trans Autom Sci Eng 7(2):257–265

    Article  Google Scholar 

  125. Djurdjanovic D, Lee J, Ni J (2003) Watchdog agent—an infotronics-based prognostics approach for product performance degradation assessment and prediction. Adv Eng Inform 17(3–4):109–125

    Article  Google Scholar 

  126. Elwany A, Gebraeel N, Maillart L (2011) Structured replacement policies for components with complex degradation processes and dedicated sensors. Oper Res 59(3):684

    Article  MathSciNet  MATH  Google Scholar 

  127. Thomas L (1986) A survey of maintenance and replacement models for maintainability and reliability of multi-item systems. Reliab Eng Syst Saf 16(4):297–309

    Article  Google Scholar 

  128. Nicolai R, Dekker R (2008) Optimal maintenance of multi-component systems: a review. Comp Syst Maintenance Handb 263–286

    Google Scholar 

  129. Okumoto K, Elsayed E (1983) An optimum group maintenance policy. Nav Res Logistics Q 30(4):667–674

    Article  MATH  Google Scholar 

  130. Assaf D, Shanthikumar J (1987) Optimal group maintenance policies with continuous and periodic inspections. Manage Sci 33(11):1440–1452

    Article  MathSciNet  MATH  Google Scholar 

  131. Ritchken P, Wilson J (1990) (m, T) group maintenance policies. Manage Sci 36(5):632–639

    Article  MathSciNet  MATH  Google Scholar 

  132. Sheu S, Jhang J (1997) A generalized group maintenance policy. Eur J Oper Res 96(2):232–247

    Article  MATH  Google Scholar 

  133. Heidergott B, Farenhorst-Yuan T (2010) Gradient estimation for multicomponent maintenance systems with age-replacement policy. Oper Res 58(3):706–718

    Article  MathSciNet  MATH  Google Scholar 

  134. Dekkert R, Smit A, Losekoot J (1992) Combining maintenance activities in an operational planning phase: a set-partitioning approach. IMA J Math Appl Bus Ind 3(4):315–331

    Google Scholar 

  135. Dekker R, Wildeman R, Van Egmond R (1996) Joint replacement in an operational planning phase. Eur J Oper Res 91(1):74–88

    Article  MATH  Google Scholar 

  136. Wildeman R, Dekker R, Smit A (1997) A dynamic policy for grouping maintenance activities. Eur J Oper Res 99(3):530–551

    Article  MATH  Google Scholar 

  137. Wildeman R (1996) The art of grouping maintenance. Erasmus University Rotterdam, Rotterdam

    Google Scholar 

  138. Jorgenson D, Mccall J, Radner R (1967) Optimal replacement policies for a ballistic missile. North-Holland, Amsterdam

    Google Scholar 

  139. Berg M (1976) Optimal replacement policies for two-unit machines with increasing running costs: I. Stoch Process Appl 4(1):89–106

    Article  MathSciNet  MATH  Google Scholar 

  140. Berg M (1977) Optimal replacement policies for two-unit machines with running costs: II. Stoch Process Appl 5(3):315–322

    Article  MathSciNet  MATH  Google Scholar 

  141. Zheng X, Fard N (1991) A maintenance policy for repairable systems based on opportunistic failure-rate tolerance. IEEE Trans Reliab 40(2):237–244

    Article  MATH  Google Scholar 

  142. Tian Z, Liao H (2011) Condition based maintenance optimization for multi-component systems using proportional hazards model. Reliab Eng Syst Saf 96(5):581–589

    Article  Google Scholar 

  143. Cheng Z, Guo Bo (2007) The optimal analysis of opportunistic maintenance model of multi-components system. Ind Eng J 10(5):66–69

    Google Scholar 

  144. Hou W, Jiang Z, Jin Y (2008) An opportunistic maintenance model considering risk. J Shanghai Jiaotong Univ (Chin Ed) 42(7):1095–1099

    Google Scholar 

  145. Chen Y, Jin J, Huang Z (2009) Study on opportunity maintenance policy of equipment outside nuclear island based on operational availability. Nucl Power Eng 30(6):108–111

    Google Scholar 

  146. Dekker R, Smeitink E (1991) Opportunity-based block replacement. Eur J Oper Res 53(1):46–63

    Article  MATH  Google Scholar 

  147. Dekker R, Dijkstra M (1992) Opportunity-based age replacement: exponentially distributed times between opportunities. Nav Res Logist 39(2):175–190

    Article  MATH  Google Scholar 

  148. Dagpunar J (1996) A maintenance model with opportunities and interrupt replacement options. J Oper Res Soc 47(11):1406–1409

    Article  MATH  Google Scholar 

  149. Camci F (2009) System maintenance scheduling with prognostics information using genetic algorithm. IEEE Trans Reliab 58(3):1–14

    Article  MathSciNet  Google Scholar 

  150. Murthy DNP, Nguyen DG (1985) Study of two-component system with failure interaction. Nav Res Logist Q 32(2):239–247

    Article  MathSciNet  MATH  Google Scholar 

  151. Scarf PA, Deara M (1998) On the development and application of maintenance policies for a two-component system with failure dependence. IMA J Manag Math 9(2):91–107

    Article  MATH  Google Scholar 

  152. Scarf PA, Deara M (2002) Block replacement policies for a two-component system with failure dependence. Nav Res Logist 50(1):70–87

    Article  MathSciNet  MATH  Google Scholar 

  153. Nakagawa T, Murthy DNP (1993) Optimal replacement policies for a two unit system with failure interactions. RAIRO. Recherche Opérationnelle 27(4):427–438

    MathSciNet  MATH  Google Scholar 

  154. Lai M T, chen Y C. Optimal periodic replacement policy for a two-unit system with failure rate interaction. The International Journal of Advanced Manufacturing Technology, 2006, 29(3):367–371.

    Google Scholar 

  155. Castro I (2009) A model of imperfect preventive maintenance with dependent failure modes. Eur J Oper Res 196(1):217–224

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 National Defense Industry Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, C., Fan, H., Wang, Z. (2022). Introduction. In: Residual Life Prediction and Optimal Maintenance Decision for a Piece of Equipment. Springer, Singapore. https://doi.org/10.1007/978-981-16-2267-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2267-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2266-3

  • Online ISBN: 978-981-16-2267-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics