Skip to main content

Comparative Study of Wireless Power Transfer and Its Future Prospective

  • Conference paper
  • First Online:
Smart and Intelligent Systems

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

Wireless power transfer (WPT) is the method to transfer power from the source to load without the use of cables or wires. There are different ways of WPT which can be broadly classified as radiative and non-radiative. The broad category of radiative WPT is microwave whose working frequency is in GHz and light waves or laser having a working frequency in THz. In non-radiative WPT, the transfer of power is basically through magnetic coupling of the transmitter and receiver coils where the maximum power transfer happens at a particular resonant frequency. Inductive and resonant inductive coupling are the two broad categories of non-radiative WPT having a working frequency ranging in Hz-MHz and MHz-GHz, respectively. Since microwaves are less prone to scattering and conversion of microwave energy to electrical energy and vice-versa is relatively easier, microwave WPT is an efficient way of radiative power transfer. The research on different ways of WPT is presented; their drawbacks and future prospective are presented in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shinohara N, Matsumoto H (1998) Experimental study of large rectenna array for microwave energy transmission. IEEE Trans Microw Theory Tech 46(3):261–268

    Google Scholar 

  2. Valenta CR, Durgin GD (2014) Harvesting wireless power: Survey of energy- harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microwave Mag 15(4):108–120

    Google Scholar 

  3. Dickinson RM (1976) Performance of a high-power, 2.388-ghz receiving array in wireless power transmission over 1.54 km. In: 1976 IEEE-MTT-S international microwave symposium, pp 139–141

    Google Scholar 

  4. Chen J, Hu Z, Wang S, Cheng Y, Liu M (2016) Investigation of wireless power transfer for smart grid on-line monitor- ing devices under hv condition. Procedia Comput Sci 83:1307–1312. The 7th international conference on ambient systems, networks and technologies.

    Google Scholar 

  5. Cheng YZ, Jin J, Li WL, Chen JF, Wang B, Gong RZ (2016) Indefinite-permeability metamaterial lens with finite size for miniaturized wireless power transfer system. AEU Int J Electron Commun 70(9):1282–1287

    Google Scholar 

  6. Cho Y, Kim JJ, Kim D, Lee S, Kim H, Song C, Kong S, Kim H, Seo C, Ahn S, Kim J (2016) Thin pcb-type metamaterials for improved efficiency and reduced emf leakage in wireless power transfer systems. IEEE Trans Microw Theory Tech 64(2):353–364

    Google Scholar 

  7. Wang X, Wang Y, Fan G, Hu Y, Nie X, Yan Z (2018) Experimental and numerical study of a magnetic resonance wireless power transfer system using superconductor and ferromagnetic metamaterials. IEEE Trans Appl Super Cond 28(5):1–6

    Google Scholar 

  8. Gz Rodrez ES, RamRakhyani AK, Schurig D, Lazzi G (2016) Compact low-frequency metamaterial design for wireless power transfer efficiency enhancement. IEEE Trans Microw Theory Tech 64(5):1644–1654

    Google Scholar 

  9. Iyer AK, Eleftheriades GV (2007) A multilayer negative-refractive-index transmission-line (nri-tl) metamaterial free-space lens at x-band. IEEE Trans Antennas Propag 55(10):2746–2753

    Google Scholar 

  10. Navarro-Cia M, Beruete M, Campillo I, Ayza MS (2011) Beamforming by left- handed extraordinary transmission metamaterial bi- and plano-concave lens at millimeter-waves. IEEE Trans Antennas Propag 59(6):2141–2151

    Google Scholar 

  11. Das S, Nguyen H, Babu GN, Iyer AK (Nov 2015) Free-space focusing at c-band using a flat fully printed multilayer metamaterial lens. IEEE Trans Antennas Propag 63(11):4702–4714

    Google Scholar 

  12. Turpin JP, Wu Q, Werner DH, Martin B, Bray M, Lier E, Near-zero-index metamaterial lens combined with amc metasurface for high-directivity low-profile antennas. IEEE Trans Antennas Propag 62(4):1928–1936

    Google Scholar 

  13. Yuan LH, Tang WX, Li H, Cheng Q, Cui TJ (2014) Three-dimensional anisotropic zero-index lenses. IEEE Trans Antennas Propag 62(8):4135–4142

    Google Scholar 

  14. Lin Q, Wong H (2018) A low-profile and wideband lens antenna based on high- refractive-index metasurface. IEEE Trans Antennas Propag 66(11):5764–5772

    Google Scholar 

  15. Mei ZL, Bai J, Niu TM, Cui TJ (2012) A half maxwell fish-eye lens an- tenna based on gradient-index metamaterials. IEEE Trans Antennas Propag 60(1):398–401

    Google Scholar 

  16. Xu H, Wang G, Tao Z, Cai T (2014) An octave-bandwidth half maxwell fish- eye lens antenna using three-dimensional gradient-index fractal metamaterials. IEEE Trans Antennas Propag 62(9):4823–4828

    Google Scholar 

  17. Ma HF, Cai BG, Zhang TX, Yang Y, Jiang WX, Cui TJ (2013) Three- dimensional gradient-index materials and their applications in microwave lens antennas. IEEE Trans Antennas Propag 61(5):2561–2569

    Google Scholar 

  18. Erfani E, Niroo-Jazi M, Tatu S (May 2016) A high-gain broadband gradient re- fractive index metasurface lens antenna. IEEE Trans Antennas Propag 64(5):1968–1973

    Google Scholar 

  19. Smith DR, Mock JJ, Starr AF, Schurig D (2005) Gradient index metama- terials. Phys Rev E 71:036609

    Google Scholar 

  20. Nasimuddin, Esselle KP (2007) A low-profile compact microwave antenna with high gain and wide bandwidth. IEEE Trans Antennas Propag 55(6):1880–1883

    Google Scholar 

  21. Zhang H, Abdallah Y, Chantalat R, Thevenot M, Monediere T, Jecko B (2012) Low-profile and high-gain yagi wire-patch antenna for wimax ap- plications. IEEE Antennas Wirel Propag Lett 11:659–662

    Google Scholar 

  22. Cao Y, Cai Y, Cao W, Xi B, Qian Z, Wu T, Zhu L (2019) Broadband and high-gain microstrip patch antenna loaded with parasitic mushroom-type structure. IEEE Antennas Wirel Propag Lett 18(7):1405–1409

    Google Scholar 

  23. Yang Z, Liang F, Yi Y, Zhao D, Wang B (2019) Metasurface-based wideband, low-profile, and high-gain antenna. IET Microwaves Antennas Propagation 13(4):436–441

    Google Scholar 

  24. Xu H, Zhou J, Zhou K, Yu Z (2018) Low-profile circularly polarised patch antenna with high gain and conical beam. IET Microwaves Antennas Propa- gation 12(7):1191–1195

    Google Scholar 

  25. Ta SX, Park I (2017) Compact wideband circularly polarized patch antenna array using metasurface. IEEE Antennas Wirel Propag Lett 16:1932–1936

    Google Scholar 

  26. Dai J, Ludois DC (Nov 2015) A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications. IEEE Trans Power Electron 30(11):6017–6029

    Google Scholar 

  27. Wang C-S, Stielau OH, Covic GA (2005) Design considerations for a contactless electric vehicle battery charger. IEEE Trans Ind Electron 52(5):1308–1314

    Google Scholar 

  28. Ou C, Liang H, Zhuang W (2015) Investigating wireless charging and mobility of electric vehicles on electricity market. IEEE Trans Ind Electron 62(5):3123–3133

    Google Scholar 

  29. Xu Q, Hu D, Duan B, He J (July 2015) A fully implantable stimulator with wireless power and data transmission for experimental investigation of epidural spinal cord stimulation. IEEE Trans Neural Syst Rehabil Eng 23(4):683–692

    Google Scholar 

  30. Athalye P, Maksimovic D, Erickson R (2003) High-performance front-end con- verter for avionics applications [aircraft power systems]. IEEE Trans Aerosp Electron Syst 39(2):462–470

    Google Scholar 

  31. Huang S, Lee T, Huang T (Dec 2014) Inductive power transfer systems for pt-based ozone-driven circuit with flexible capacity operation and frequency-tracking mechanism. IEEE Trans Ind Electron 61(12):6691–6699

    Google Scholar 

  32. Sohn YH, Choi BH, Lee ES, Lim GC, Cho G, Rim CT (Nov 2015) Gen- eral unified analyses of two-capacitor inductive power transfer systems: Equiva- lence of current-source ss and sp compensations. IEEE Trans Power Electron 30(11):6030–6045

    Google Scholar 

  33. Chwei-Sen Wang, Covic GA, Stielau OH (2004) Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems. IEEE Trans Ind Electron 51(1):148–157

    Google Scholar 

  34. Chwei-Sen Wang, Stielau OH, Covic GA (2005) Design considerations for a contactless electric vehicle battery charger. IEEE Trans Ind Electron 52(5):1308–1314

    Google Scholar 

  35. Jegadeesan R, Guo Y (2012) Topology selection and efficiency improvement of inductive power links. IEEE Trans Antennas Propag 60(10):4846–4854

    Google Scholar 

  36. Raible DE (2008) High intensity laser power beaming for wireless power transmis- sion, Master’s thesis. Cleveland State University, Dept. Elect. Comput. Eng.

    Google Scholar 

  37. Kawashima N, Takeda K (2005) Laser energy transmission for a wireless energy supply to robots. In: Proceedings Symposium on Automation and Robotics Construction, p 373–380

    Google Scholar 

  38. Shi D, Zhang L, Ma H, Wang Z, Wang Y, Cui Z (2016) Research on wireless power transmission system between satel- lites. In: 2016 IEEE wireless power transfer conference (WPTC), pp 1–4

    Google Scholar 

  39. Jin K, Zhou W (2019) Wireless laser power transmission: a review of recent progress. IEEE Trans Power Electron 34(4):3842–3859

    Google Scholar 

  40. Tesla N (1900) System of transmission of electrical energy

    Google Scholar 

  41. Tesla N (1902) A new tesla laboratory on long island.Electr World Eng 16:98–99

    Google Scholar 

  42. Brown WC (1969) Experiments involving a microwave beam to power and position a helicopter. IEEE Trans Aerosp Electron Syst AES-5(5):692–702

    Google Scholar 

  43. Takahashi T, Sasaki T, Homma Y, Mihara S, Sasaki K, Nakamura S, Makino K, Joudoi D, Ohashi K (2016) Phased array system for high efficiency and high accuracy microwave power transmission. In: 2016 IEEEinternational symposium on phased array systems and technology (PAST), pp 1–7

    Google Scholar 

  44. Gowda VR, Yurduseven O, Lipworth G, Zupan T, Reynolds MS, Smith DR (2016) Wireless power transfer in the radiative near field. IEEE Antennas Wireless Propag Lett 15:1865–1868

    Google Scholar 

  45. Khang S, Lee D, Hwang I, Yeo T, Yu J (Jan 2018) Microwave power transfer with optimal number of rectenna arrays for midrange applications. IEEE Antennas Wirel Propag Lett 17(1):155–159

    Google Scholar 

  46. Chen Q, Chen X, Duan X (2018) Investigation on beam collection efficiency in microwave wireless power transmission. J Electromag Waves Appl 32(9):1136–1151

    Google Scholar 

  47. Yi X, Chen X, Zhou L, Hao S, Zhang B, Duan X (2019) A microwave power transmission experiment based on the near-field focused transmitter. IEEE Antennas Wirel Propag Lett 18(6):1105–1108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baghel, A.K., Behera, C., Amalraj, S., Singh, A., Nayak, S.K. (2022). Comparative Study of Wireless Power Transfer and Its Future Prospective. In: Dawn, S., Das, K.N., Mallipeddi, R., Acharjya, D.P. (eds) Smart and Intelligent Systems. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-2109-3_20

Download citation

Publish with us

Policies and ethics