Skip to main content

Industrial Enzymes

  • Chapter
  • First Online:
Life Sciences Industry

Part of the book series: New Paradigms of Living Systems ((NPLS,volume 2))

Abstract

Enzymes are biological origin. Most of the enzymes are multiple folded globular proteins (Fig. 2.1), which are water soluble by forming colloids like suspension, unlike the fibrous or membrane protein. The enzymes are also known as biocatalysts involved in biochemical reactions like digestion, absorption, respiration, reproduction, and growth and development. Enzyme technology is basically the practice of isolation, purification, and characterization of enzyme for human use and other industrial purposes. The enzymes can be used in different forms (soluble, tablet, or immobilized) (Fig. 2.2) for clinical application. Enzymes can be applicable in very diversified field like food preservation, human health, food production, washing powders, textile manufacture, leather industry, paper industry, medical applications, and scientific research (Fig. 2.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vellard M (2003) The enzyme as drug: application of enzymes as pharmaceuticals. Curr Opin Biotechnol 14(444):450

    Google Scholar 

  2. Ries M (2017) Enzyme replacement therapy and beyond-in memoriam Roscoe O. Brady, M.D. (1923-2016). J Inherit Metab Dis 40(3):343–356

    Article  CAS  PubMed  Google Scholar 

  3. Booth C, Hershfield M, Notarangelo L, Buckley R, Hoenig M, Mahlaoui N, Cavazzana-Calvo M, Aiuti A, Gaspar HB (2007) Management options for adenosine deaminase deficiency; proceedings of the EBMT satellite workshop (Hamburg, March 2006). Clin Immunol 123(2):139–147

    Article  CAS  PubMed  Google Scholar 

  4. Akimoto S, Furuya Y, Akakura K et al (1997) Relationship between prostate-specific antigen, clinical stage, and degree of bone metastasis in patients with prostate cancer: comparison with prostatic acid phosphatase and alkaline phosphatase. Int J Urol 6:572–575

    Article  Google Scholar 

  5. Stanbury JB et al (1983) The metabolic basis of inherited disease, 5th edn. McGraw-Hill, New York

    Google Scholar 

  6. Dattoli M, Wallner K, True L et al (1999) Prognostic role of serum prostatic acid phosphatase for 103Pd-based radiation for prostatic carcinoma. Int J Radiat Oncol Biol Phys 45:853–856

    Article  CAS  PubMed  Google Scholar 

  7. Allen SM (1995) An enzyme linked immunosorbent assay (ELISA) for detection of seminal fluid using a monoclonal antibody to prostatic acid phosphatase. J Immunoass 16:297–308

    Article  CAS  Google Scholar 

  8. Aach RD, Szmuness W, Mosley JW, Hollinger FB, Kahn RA, Stevens CE, Edwards VM, Werch J (1981) Serum alanine aminotransferase of donors in relation to the risk of non-A, non-B hepatitis in recipients: the transfusion-transmitted virus study. N Engl J Med 304:989–994

    Article  CAS  PubMed  Google Scholar 

  9. De Ritis F, Coltori M, Gisuti G (1972) Serum transaminase activities in liver disease. Lancet 1:685–687

    Article  PubMed  Google Scholar 

  10. Aach RO, Szmuness W, Mosley JW et al (1981) Serum alanine aminotransferase of donors in relation to the risk of non-A, non-B hepatitis in recipients. The transfusion-transmitted virus study. N Engl J Med 304:989–994

    Article  CAS  PubMed  Google Scholar 

  11. DeRitis F, Coltori M, Gisuti G (1972) Serum transaminase activities in liver disease. Lancet 1:685–687

    Article  CAS  Google Scholar 

  12. Rei R (1984) Measurement of aminotransferase: part I. Aspartate aminotransferase. CRC Crit Rev Clin Lab Sci 21:99–186

    Article  Google Scholar 

  13. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1616

    Article  CAS  Google Scholar 

  14. Kandra L (2003) α-Amylases of medical and industrial importance. J Mol Struct 666:487–498

    Article  CAS  Google Scholar 

  15. Rajagopalan G, Krishnan C (2008) Alpha-amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresour Technol 99:3044–3050

    Article  CAS  PubMed  Google Scholar 

  16. Cummings JL (2003) Use of cholinesterase inhibitors in clinical practice: evidence-based recommendations. Am J Geriatr Psychiatry 11(2):131–145

    Article  PubMed  Google Scholar 

  17. Rosalki SB et al (1971) Plasma gamma-glutamyl transpeptidase elevation in patients receiving enzyme - inducing drugs. Lancet 2:376–377

    Article  CAS  PubMed  Google Scholar 

  18. Moussavian SN et al (1985) Serum gamma-glutamyl transpeptidase and chronic alcoholism: influence of alcohol ingestion and liver disease. Dig Dis Sci 30:211–214

    Article  CAS  PubMed  Google Scholar 

  19. Orrego H et al (1985) Relationship between gamma-glutamyl transpeptidase and mean urinary alcohol levels in alcoholics while drinking after alcohol withdrawal. Alcohol Clin Exp Res 9:10–13

    Article  CAS  PubMed  Google Scholar 

  20. Panesar PS, Marwaha SS (2014) Biotechnology in agriculture and food processing: opportunities and challenges. CRC Press, Boca Raton

    Google Scholar 

  21. Gonzalez NJ, Isaacs LL (1999) Evaluation of pancreatic proteolytic enzyme treatment of adenocarcinoma of the pancreas with nutrition and detoxification support. Nutr Cancer 33:117–124

    Article  CAS  PubMed  Google Scholar 

  22. Williams DC, Van Frank RM, Muth WL, Burnett JP (1982) Cytoplasmic inclusion bodies in Escherichia coli producing biosynthetic human insulin proteins. Science 215:687–689

    Article  CAS  PubMed  Google Scholar 

  23. Freedman RB, Wetzel R (1992) Protein engineering. Curr Opin Biotechnol 3:323–325

    Article  CAS  PubMed  Google Scholar 

  24. Chrunyk BA, Evans J, Lillquist J, Young P, Wetzel R (1993) Inclusion body formation and protein stability in sequence variants of interleukin-1 beta. J Biol Chem 268:18053–18061

    Article  CAS  PubMed  Google Scholar 

  25. Hou J, Tyo KEJ, Liu Z, Petranovic D, Nielsen J (2012) Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 12:491–510

    Article  CAS  PubMed  Google Scholar 

  26. Petranovic D, Nielsen J (2008) Can yeast systems biology contribute to the understanding of human disease? Trends Biotechnol 26:584–590

    Article  CAS  PubMed  Google Scholar 

  27. Petranovic D, Tyo K, Vemuri GN, Nielsen J (2010) Prospects of yeast systems biology for human health: integrating lipid, protein and energy metabolism. FEMS Yeast Res 10:1046–1059

    Article  CAS  PubMed  Google Scholar 

  28. Kim I-K, Roldão A, Siewers V, Nielsen JA (2012) Systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res 12:228–248

    Article  CAS  PubMed  Google Scholar 

  29. Yoshide (2007) ER stress and diseases. FEBS J 274(3):630–658

    Article  CAS  Google Scholar 

  30. Coughlan CM, Brodsky JL (2005) Use of yeast as a model system to investigate protein conformational diseases. Mol Biotechnol 3:171–180

    Article  Google Scholar 

  31. Schaller M et al (2005) Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48:365–377

    Article  CAS  PubMed  Google Scholar 

  32. Sorgo AG et al (2013) Beyond the wall: Candida albicans secret(e)s to survive. FEMS Microbiol Lett 338:10–17

    Article  CAS  PubMed  Google Scholar 

  33. Ferrer-Miralles et al (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Factories 8:17

    Article  CAS  Google Scholar 

  34. Mattanovich D et al (2012) Recombinant protein production in yeasts. Methods Mol Biol 824:329–358

    Article  CAS  PubMed  Google Scholar 

  35. Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3(2):119–128

    Article  CAS  PubMed  Google Scholar 

  36. Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S et al (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443

    Article  CAS  PubMed  Google Scholar 

  37. Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N et al (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24:210–215

    Article  CAS  PubMed  Google Scholar 

  38. Kjeldsen T, Hach M, Balschmidt P, Havelund S, Pettersson AF, Markussen J (1998) Prepro-leaders lacking N-linked glycosylation for secretory expression in the yeast Saccharomyces cerevisiae. Protein Expr Purif 14:309–316

    Article  CAS  PubMed  Google Scholar 

  39. Koide T, Pang WL, Baliga NS (2009) The role of predictive modelling in rationally re-engineering biological systems. Nat Rev Microbiol 7:297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ng CY, Jung MY, Lee J, Oh MK (2012) In Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Factories 11:68

    Article  CAS  Google Scholar 

  41. Li X, Guo D, Cheng Y, Zhu F, Deng Z, Liu T (2014) Overproduction of fatty acids in engineered Saccharomyces cerevisiae Production of 2,3-butanediol. Biotechnol Bioeng 111:1841–1852

    Article  CAS  PubMed  Google Scholar 

  42. Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177–1180

    Article  CAS  PubMed  Google Scholar 

  43. Angermayr SA, Van der Woude AD, Correddu D, Vreugdenhil A, Verrone V, Hellingwerf KJ (2014) Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnol Biofuels 7:99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yuan Y, Bi C, Nicolaou SA, Zingaro KA, Ralston M, Papoutsakis ET (2014) Overexpression of the Lactobacillus plantarum peptidoglycan biosynthesis murA2 gene increases the tolerance of Escherichia coli to alcohols and enhances ethanol production. Appl Microbiol Biotechnol 98:8399–8411

    Article  CAS  PubMed  Google Scholar 

  45. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  CAS  PubMed  Google Scholar 

  46. Varman AM, Xiao Y, Leonard E, Tang YJ (2011) Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae. Microb Cell Factories 10:45

    Article  CAS  Google Scholar 

  47. Büchel F, Rodriguez N, Swainston N, Wrzodek C, Czauderna T, Keller R et al (2013) Path models: large-scale generation of computational models from biochemical pathway maps. BMC Syst Biol 7:116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lee D, Smallbone K, Dunn WB, Murabito E, Winder CL, Kell DB et al (2012) Improving metabolic flux predictions using absolute gene expression data. BMC Syst Biol 6:73

    Article  PubMed  PubMed Central  Google Scholar 

  51. Joyce AR, Palsson BØ (2008) Predicting gene essentiality using genome-scale in silico models. Methods Mol Biol 416:433–457

    Article  CAS  PubMed  Google Scholar 

  52. Dobson PD, Smallbone K, Jameson D, Simeonidis E, Lanthaler K, Pir P et al (2010) Further developments towards a genome-scale metabolic model of yeast. BMC Syst Biol 4:145

    Article  PubMed  PubMed Central  Google Scholar 

  53. Heavner BD, Smallbone K, Barker B, Mendes P, Walker LP (2012) Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Syst Biol 6:55

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tolbert WR (1983) Large-scale cell culture technology. Annu Rep Ferment Processes 6:35–74

    Article  Google Scholar 

  55. Arathoon WR, Birch JR (1986) Large-scale cell culture in biotechnology. Science 232:1390–1395

    Article  CAS  PubMed  Google Scholar 

  56. Birch JR et al (1987) Antibody production with airlift fermenters. In: Lydersen BK (ed) Large scale cell culture technology. Hanser Publishers, New York

    Google Scholar 

  57. Lydersen BK (1987) Large-scale cell culture technology. Hanser Publishers, New York

    Google Scholar 

  58. Wilkinson PJ (1987) The development of a large scale production process. In: Moody GW, Baker PB (eds) Bioreactors and biotransformations. Elsevier, London, pp 111–120

    Google Scholar 

  59. Bailey JE, Ollis DF (1977) Biochemical engineering fundamentals. McGraw-Hill, New York, pp 444–451

    Google Scholar 

  60. Chisti Y, Moo-Young M (1999) Fermentation technology, bioprocessing, scale-up and manufacture. In: Moses V, Cape RE (eds) Biotechnology: the science and the business. Harwood Academic, Amsterdam

    Google Scholar 

  61. Desille M et al (2002) Reduced encephalopathy in pigs with ischemia-induced acute hepatic failure treated with a bioartificial liver containing alginate-entrapped hepatocytes. Crit Care Med 30(3):658–663

    Article  PubMed  Google Scholar 

  62. Coward SM et al (2009) Alginate-encapsulated HepG2 cells in a fluidized bed bioreactor maintain function in human liver failure plasma. Artif Organs 33(12):1117–1126

    Article  CAS  PubMed  Google Scholar 

  63. Kwon MS et al (2005) Application of a radial flow bioreactor in the production of beta1,3-N-cetylglucosaminyltransferase-2 fused with GFPuv using stably transformed insect cell lines. Biotechnol Appl Biochem 42:41–46

    Article  CAS  PubMed  Google Scholar 

  64. Iwahori T et al (2005) Radial flow bioreactor for the creation of bioartificial liver and kidney. Transplant Proc 37:212–214

    Article  CAS  PubMed  Google Scholar 

  65. Pörtner R et al (2007) Fixed bed reactors for the cultivation of mammalian cells: design, performance and scale-up. Open Biotechnol J 1:41–46

    Article  Google Scholar 

  66. Lüdemann I et al (1996) Improvement of the culture stability of non-anchorage-dependent animal cells grown in serum-free media through immobilization. Cytotechnology 19:111–124

    Article  Google Scholar 

  67. Looby D et al (1990) The immobilization of animal cells in fixed bed and fluidized porous glass sphere reactors. In: de Bont JAM et al (eds) Physiology of immobilized cells. Elsevier, London

    Google Scholar 

  68. Yoshida H et al (1993) Production of monoclonal antibodies with a radial-flow bioreactor. In: Kaminogawa S (ed) Animal cell technology: basic and applied aspects. Kluwer Academic Publishers, Dordrecht, pp 347–353

    Chapter  Google Scholar 

  69. Thelwall PE et al (1998) Analysis of cell growth in a fixed bed bioreactor using magnetic resonance spectroscopy and imaging. In: Merten OW, Perrin P, Griffiths JB (eds) New developments and new applications in animal cell technology. Kluwer Academic Publishers, Cham, pp 627–633

    Google Scholar 

  70. Ray NG et al (1990) Continuous cell cultures in fluidized-bed bioreactors-cultivation of hybridomas and recombinant chines hamster ovary cells immobilized in collagen microspheres. Ann N Y Sci 589:443–457

    Article  CAS  Google Scholar 

  71. Gion T et al (1999) Evaluation of a hybrid artificial liver using a polyurethane foam packed-Bed culture system in dogs. J Surg Res 82:131–136

    Article  CAS  PubMed  Google Scholar 

  72. Wang G et al (1992) A modified celli gen-packed bed bioreactor for hybridoma cell cultures. Cytotechnology 9:41–49

    Article  CAS  PubMed  Google Scholar 

  73. Jima H et al (1998) Formation of a spherical multicellular aggregate (spheroid) of animal cells in the pores of polyurethane foam as a cell culture substratum and its application to a hybrid artificial liver. J Biomater Sci Polym 9:765–778

    Article  Google Scholar 

  74. Kataoka K et al (2005) An organic-inorganic hybrid scaffold for the culture of HepG cells in a bioreactor. Biomaterials 26:2509–2516

    Article  CAS  PubMed  Google Scholar 

  75. Nehring D et al (2006) Experimental and modelling study of different process modes for retroviral production in a fixed bed reactor. J Biotechnol 122:239–253

    Article  CAS  PubMed  Google Scholar 

  76. Yamashita Y et al (2001) Polyurethane foam/spheroid culture system using human hepatoblastoma cell line (Hep G2) as a possible new hybrid artificial liver. Cell Transplant 10:717–722

    Article  CAS  PubMed  Google Scholar 

  77. Yang ST et al (2004) A fibrous-bed bioreactor for continuous production of monoclonal antibody by hybridoma. Adv Biochem Eng Biotechnol 87:61–96

    CAS  PubMed  Google Scholar 

  78. Morsiani E et al (2002) Biologic liver support: optimal cell source and mass. Int J Artif Organs 25:985–993

    Article  CAS  PubMed  Google Scholar 

  79. Shiba Y et al (2003) Culture of porcine hepatocytes using radial flow bioreactor system. In: Yagasaki K (ed) Animal cell technology for innovative life sciences. Kluwer Academic Publishers, Cham

    Google Scholar 

  80. Highfill JG et al (1996) Large-scale production of murine bone marrow cells in an airlift packed bed bioreactor. Biotechnol Bioeng 50:514–520

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bahera, B.K., Prasad, R., Behera, S. (2021). Industrial Enzymes. In: Life Sciences Industry. New Paradigms of Living Systems, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-16-2051-5_2

Download citation

Publish with us

Policies and ethics