Skip to main content

Commercial Biomolecules

  • 417 Accesses

Part of the New Paradigms of Living Systems book series (NPLS,volume 2)

Abstract

Discovery of insulin and its laboratory oriented clinical trials, and subsequently transfer the laboratory technology on isolated and purified insulin from cattle system for direct clinical trial on human system was the first phase of successful application of therapeutic bio-molecules. Later, these successful laboratory trials boosted the traditional pharmaceutical companies for commercialisation of therapeutic biomolecules in the global market. Wide acceptability of therapeutic protein has given challenge for more quality production of biopharmaceutical through genetically tailored host cells from various living sources. Although it is difficult to trace the beginning of biopharmaceutical companies, but it is sure to say that the period between 1918 and 1939 was marked by two breakthroughs with the discovery of insulin and penicillin.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-2051-5_1
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-2051-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7
Fig. 1.8
Fig. 1.9
Fig. 1.10

References

  1. Barrett KE, Boitano S, Barman SM, Brooks HL (2009) Ganong's review of medical physiology, 23rd edn. McGraw Hill, New York, p 31

    Google Scholar 

  2. Pour PM, Standop J, Batra SK (2002) Are islet cells the gatekeepers of the pancreas? Pancreatology 2(5):440–448

    CrossRef  PubMed  Google Scholar 

  3. Sandow J, Landgraf W, Becker R, Seipke G (2015) Equivalent recombinant human insulin preparations and their place in therapy. Eur Endocrinol 11(1):10–16

    CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Landgraf W, Sandow J (2016) Recombinant human insulins clinical efficacy and safety in diabetes therapy. Eur Endocrinol 12(1):12–17

    CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Drugs@FDA (2019) Search on “Insulin” for a list of all insulins approved in the US. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm

  6. Bliss M (1993) The history of insulin. Diabetes Care 16(Suppl 3):S4–S7

    CrossRef  Google Scholar 

  7. Conlon JM (2001) Evolution of the insulin molecule: insights into structure-activity and phylogenetic relationships. Peptides 22(7):1183–1193

    CrossRef  CAS  PubMed  Google Scholar 

  8. Pfizer Inc. (2009) 1900–1950. Exploring Our History

    Google Scholar 

  9. Mayer JP, Zhang F, DiMarchi RD (2007) Insulin structure and function. Biopolymers 88(5):687–713

    CrossRef  CAS  PubMed  Google Scholar 

  10. Discovery and Development of Penicillin: International Historic Chemical Landmark (2019) Washington, D.C.: American Chemical Society.

    Google Scholar 

  11. Penicillium chrysogenum (P. notatum), the natural source for the wonder drug penicillin, the first antibiotic. Tom Volk’s Fungus of the Month for November 2003.

    Google Scholar 

  12. Tracking host cell proteins during biopharmaceutical manufacturing: advanced methodologies to ensure high product quality. www.americanpharmaceuticalreview.com

  13. Goey CH, Alhuthali S, Kontoravdi C (2018) Host cell protein removal from biopharmaceutical preparations: towards the implementation of quality by design. Biotechnol Adv 36(4):1223–1237

    CrossRef  CAS  PubMed  Google Scholar 

  14. Dimitrov DS (2012) Therapeutic proteins. Methods Mol Biol 899:1–26

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang X, Hunter AK, Mozier NM (2009) Host cell proteins in biologics development: identification, quantitation and risk assessment. Biotechnol Bioeng 103(3):446–458

    CrossRef  CAS  PubMed  Google Scholar 

  16. Zhu-Shimoni J, Yu C, Nishihara J, Wong RM, Gunawan F, Lin M, Krawitz D, Liu P, Sandoval W, Vanderlaan M (2014) Host cell protein testing by ELISAs and the use of orthogonal methods. Biotechnol Bioeng 111(12):2367–2379

    CrossRef  CAS  PubMed  Google Scholar 

  17. Bracewell DG, Francis R, Smales CM (2015) The future of host cell protein (HCP) identification during process development and manufacturing linked to a risk-based management for their control. Biotechnol Bioeng 112(9):1727–1737

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blattner et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462

    CrossRef  CAS  PubMed  Google Scholar 

  19. Gibbs RA, Weinstock GM, Metzker ML et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521

    CrossRef  CAS  PubMed  Google Scholar 

  20. Waterston RH, Lindblad-Toh K, Birney E, Rogers J et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    CrossRef  CAS  PubMed  Google Scholar 

  21. Hart RA, Rinas U, Bailey JE (1990) Protein composition of vitreoscilla haemoglobin inclusion bodies produced in Escherichia coli. J Biol Chem 265(21):12728–12733

    CrossRef  CAS  PubMed  Google Scholar 

  22. Rinas U, Bailey JE (1992) Protein compositional analysis of inclusion bodies produced in recombinant Escherichia coli. Appl Microbiol Biotechnol 37:609–614

    CrossRef  CAS  PubMed  Google Scholar 

  23. Rinas U, Boone TC, Bailey JE (1993) Characterization of inclusion bodies in recombinant Escherichia coli producing high levels of porcine somatotropin. J Biotechnol 28:313–320

    CrossRef  CAS  PubMed  Google Scholar 

  24. Veeraragavan K (1989) Studies on two major contaminating proteins of the cytoplasmic inclusion bodies in Escherichia coli. FEMS Microbiol Lett 61:149–152

    CrossRef  CAS  Google Scholar 

  25. Langer ES (2011) Trends in perfusion bioreactors. Bioprocess Int 9:18–22

    Google Scholar 

  26. Langer ES, Rader RA (2014) Continuous bioprocessing and perfusion: wider adoption coming as bioprocessing matures. Bioprocess J 13:43–49

    CrossRef  Google Scholar 

  27. Croughan MS, Konstantinov KB, Cooney C (2015) The future of industrial bioprocessing: batch or continuous? Biotechnol Bioeng 112:648–651

    CrossRef  CAS  PubMed  Google Scholar 

  28. Pollock J, Ho SV, Farid SS (2013) Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty. Biotechnol Bioeng 110:206–219

    CrossRef  CAS  PubMed  Google Scholar 

  29. Voisard D, Meuwly F, Ruffieux PA, Baer G, Kadouri A (2003) Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng 82:751–765

    CrossRef  CAS  PubMed  Google Scholar 

  30. Wang SG, Ravikrishnan J, Lin H, Vogel J, Coffman J (2017) Shear contributions to cell culture performance and product recovery in ATF and TFF perfusion systems. J Biotechnol 246:52–60

    CrossRef  CAS  PubMed  Google Scholar 

  31. Voisard D, Meuwly F, Ruffieux PA, Baer G, Kadouri A (2003) Potential of cell retention techniques for largescale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng 82(7):751–765

    CrossRef  CAS  PubMed  Google Scholar 

  32. Woodside SM, Bowen BD, Piret JM (1998) Mammalian cell retention devices for stirred perfusion bioreactors. Cytotechnology 28(1–3):163–175

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mahler G (2016) Advancing Biologics development and Manufacturing. http://www.agcbio.com/resource-center/news/advancing-biologics-development-andmanufacturing

  34. Zheng R (2010) The game changer: transforming the biopharmaceutical landscape through single-use technologies. BioProcess Int 8:S4–S9

    Google Scholar 

  35. Levine H (2010) The use of disposable technology for downstream processing CHI immunotherapeutics and vaccine summit. IDrugs 13:16–19

    Google Scholar 

  36. Rao G (2009) Disposable bioprocessing: the future has arrived. Biotechnol Bioeng 102:348–356

    CrossRef  CAS  PubMed  Google Scholar 

  37. Whitford W (2010) Single-use systems as principal components in bioproduction. BioProcess Int 8:34–44

    Google Scholar 

  38. Pora H, Rawlings B (2009) A User’s checklist for introducing single-use components into process systems. BioProcess Int 7:9–16

    Google Scholar 

  39. Williamson C, Fitzgerald R, Shukla A (2009) Strategies for implementation of a BPC in commercial biologics manufacturing. BioProcess Int 7:24–33

    CAS  Google Scholar 

  40. Wilson J (2006) A fully disposable monoclonal antibody manufacturing train. BioProcess Int 4:S34–S36

    Google Scholar 

  41. Fuller M, Pora H (2008) Introducing disposable systems into biomanufacturing: a CMO case study. BioProcess Int 8:30–36

    Google Scholar 

  42. Whitford W (2010) Using disposables in cell-culture based vaccine production. BioProcess Int 8:S20–S27

    Google Scholar 

  43. Eibl D, Peuker T, Eibl R (2011) Single-use equipment in biopharmaceutical manufacture: a brief introduction single-use technology in biopharmaceutical manufacture. Wiley, Hoboken, pp 1–11

    CrossRef  Google Scholar 

  44. Singh V (1999) Disposable bioreactor for cell culture using wave induced agitation. Cytotechnology 30:149–158

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  45. Haldankar R (2006) Serum-free suspension large-scale transient transfection of CHO cells in WAVE bioreactors. Mol Biotechnol 34:191–199

    CrossRef  CAS  PubMed  Google Scholar 

  46. Eibl R, Loffelholz C, Eibl D (2011) Single-use bioreactors: an overview single-use technology in biopharmaceutical manufacture. Wiley, Hoboken, pp 33–51

    CrossRef  Google Scholar 

  47. Laukel M (2011) Disposable downstream processing for clinical manufacturing. BioProcess Int 9:S14–S21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bahera, B.K., Prasad, R., Behera, S. (2021). Commercial Biomolecules. In: Life Sciences Industry. New Paradigms of Living Systems, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-16-2051-5_1

Download citation