Skip to main content

A Survey on 5G Architecture and Security Scopes in SDN and NFV

  • Conference paper
  • First Online:
Applied Information Processing Systems

Abstract

5G is an emerging technology and is not going to be an update to its predecessors. Researchers are intended to achieve a head-turning advancement in terms of all the way performances such as data rates, network reliability, massive connectivity, mobility, energy efficiency, latency, secure channel, spectral efficiency, etc. 5G is going to be an end-to-end system that will provide hyper-connectivity to its users. It is supposed to support roughly three use cases, i.e., Enhanced Mobile Broadband (eMBB), Ultra-Reliable and Low Latency Communication (URLLC), and massive Machine-Type Communication (mMTC). All these create convergence among wireless communication and computer networking that incorporates Software-Driven Network (SDN), Network Functions Virtualization (NFV), Service-Based Architecture (SBA), 5G new radio technologies (M-MIMO, mmWave, UDN, FD), massive IoT techniques. This hyper-convergence will introduce new trust and security threats and relevant threat management challenges. In this paper, we tried to summarize why and how 5G is evolved and the technology requirements for 5G revolutions, and the steps adopted for technology change over to 5G. We focused on potential threats and challenges and their suggested mitigation techniques. Several open issues are identified, and possible future research directions are also discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pirinen, P.: A brief overview of 5G research activities. In: Proc. 2014 1st Int. Conf. 5G Ubiquitous Connect. 5GU 2014, vol. 5, pp. 17–22 (2014). https://doi.org/10.4108/icst.5gu.2014.258061

  2. Shafi, M., Fellow, L., Molisch, A.F., Smith, P.J., Haustein, T., Zhu, P., Member, S., Silva, P.D., Tufvesson, F., Benjebbour, A., Member, S.: 5G: a tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 35, 1201–1221 (2017)

    Article  Google Scholar 

  3. Fourati, H., Maaloul, R., Chaari, L.: A survey of 5G network systems: challenges and machine learning approaches. Springer Berlin Heidelberg (2020). https://doi.org/10.1007/s13042-020-01178-4.

  4. Gupta, A., Jha, R.K.: A survey of 5G network: architecture and emerging technologies. IEEE Access 3, 1206–1232 (2015). https://doi.org/10.1109/ACCESS.2015.2461602

    Article  Google Scholar 

  5. Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano, A., Soong, A.C.K., Zhang, J.C.: What will 5G be? IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014). https://doi.org/10.1109/JSAC.2014.2328098

    Article  Google Scholar 

  6. Yousaf, F.Z., Bredel, M., Schaller, S., Schneider, F.: NFV and SDN-key technology enablers for 5G networks. IEEE J. Sel. Areas Commun. 35, 2468–2478 (2017). https://doi.org/10.1109/JSAC.2017.2760418

    Article  Google Scholar 

  7. Zhang, S., Wang, Y., Zhou, W.: Towards secure 5G networks: a survey. Comput. Netw. 162 (2019). https://doi.org/10.1016/j.comnet.2019.106871

  8. Dutta, A., Hammad, E.: 5G security challenges and opportunities: a system approach. In: 2020 IEEE 3rd 5G World Forum, 5GWF 2020—Conf. Proc. pp. 109–114 (2020). https://doi.org/10.1109/5GWF49715.2020.9221122

  9. Wen, F., Wymeersch, H., Peng, B., Tay, W.P., So, H.C., Yang, D.: A survey on 5G massive MIMO localization. 94, 21–28 (2019)

    Google Scholar 

  10. Li, S., Xu, L.D., Zhao, S.: 5G internet of things: a survey. J. Ind. Inf. Integr. 10, 1–9 (2018). https://doi.org/10.1016/j.jii.2018.01.005

    Article  Google Scholar 

  11. Mohyeldin, E.: Minimum requirements relate r d to technical performance for IMT-2020 radio interface(s), document ITU-R M. [IMT-2020. TECH PERF REQ]. https://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/Documents/S01-1_Requirements%20for%20IMT-2020_Rev.pdf (2020). Last accessed 5 Dec 2020

  12. Morgado, A., Huq, K.M.S., Mumtaz, S., Rodriguez, J.: A survey of 5G technologies: regulatory, standardization and industrial perspectives. Digit. Commun. Netw. 4, 87–97 (2018). https://doi.org/10.1016/j.dcan.2017.09.010

    Article  Google Scholar 

  13. Hansen, C.: WIGIG: multi-gigabit wireless communications in the 60 GHZ band. 60–61 (2011)

    Google Scholar 

  14. Nguyen, T.: Small cell networks and the evolution of 5G (Part 1). https://www.qorvo.com/design-hub/blog/small-cell-networks-and-the-evolution-of-5g. Last accessed 4 Jan 2020

  15. Liu, F., Peng, J., Zuo, M.: Toward a secure access to 5G network. In: Proc.—17th IEEE Int. Conf. Trust. Secur. Priv. Comput. Commun. 12th IEEE Int. Conf. Big Data Sci. Eng. Trust, pp. 1121–1128 (2018). https://doi.org/10.1109/TrustCom/BigDataSE.2018.00156

  16. Ahmad, I., Kumar, T., Liyanage, M., Okwuibe, J., Ylianttila, M., Gurtov, A.: 5G security: analysis of threats and solutions. In: 2017 IEEE Conf. Stand. Commun. Networking, CSCN 2017, pp. 193–199 (2017). https://doi.org/10.1109/CSCN.2017.8088621

  17. Neves, P., Calé, R., Costa, M., Gaspar, G., Alcaraz-Calero, J., Wang, Q., Nightingale, J., Bernini, G., Carrozzo, G., Valdivieso, Á., Villalba, L.J.G., Barros, M., Gravas, A., Santos, J., Maia, R., Preto, R.: Future mode of operations for 5G—the SELFNET approach enabled by SDN/NFV. Comput. Stand. Interfaces 54, 229–246 (2017). https://doi.org/10.1016/j.csi.2016.12.008

    Article  Google Scholar 

  18. Panwar, N., Sharma, S., Singh, A.K.: A survey on 5G: the next generation of mobile communication. Phys. Commun. 18, 64–84 (2016). https://doi.org/10.1016/j.phycom.2015.10.006

    Article  Google Scholar 

  19. Singh, S., Saxena, N., Roy, A., Kim, H.S.: A survey on 5G network technologies from social perspective. IETE Tech. Rev. (Institution Electron. Telecommun. Eng. India) 34, 30–39 (2017). https://doi.org/10.1080/02564602.2016.1141077

  20. Ahmad, I., Kumar, T., Liyanage, M., Okwuibe, J., Ylianttila, M., Gurtov, A.: Overview of 5G security challenges and solutions. IEEE Commun. Stand. Mag. 2, 36–43 (2018). https://doi.org/10.1109/MCOMSTD.2018.1700063

    Article  Google Scholar 

  21. Krishnan, P., Najeem, J.S.: A review of security, threats and mitigation approaches for SDN architecture. Int. J. Innov. Technol. Explor. Eng. 8, 389–393 (2019)

    Google Scholar 

  22. Gohil, A., Modi, H., Patel, S.K.: 5G technology of mobile communication: a survey. In: 2013 Int. Conf. Intell. Syst. Signal Process. ISSP 2013, pp. 288–292 (2013). https://doi.org/10.1109/ISSP.2013.6526920

  23. Khettab, Y., Bagaa, M., Dutra, D.L.C., Taleb, T., Toumi, N.: Virtual security as a service for 5G verticals. In: IEEE Wirel. Commun. Netw. Conf. WCNC (2018). https://doi.org/10.1109/WCNC.2018.8377298.

  24. Ji, X., Huang, K., Jin, L., Tang, H., Liu, C., Zhong, Z., You, W., Xu, X., Zhao, H., Wu, J., Yi, M.: Overview of 5G security technology. Sci. China Inf. Sci. 61 (2018). https://doi.org/10.1007/s11432-017-9426-4

  25. Blanco, B., Fajardo, J.O., Giannoulakis, I., Kafetzakis, E., Peng, S., Pérez-Romero, J., Trajkovska, I., Khodashenas, P.S., Goratti, L., Paolino, M., Sfakianakis, E., Liberal, F., Xilouris, G.: Technology pillars in the architecture of future 5G mobile networks: NFV MEC and SDN. Comput. Stand. Interfaces 54, 216–228 (2017). https://doi.org/10.1016/j.csi.2016.12.007

    Article  Google Scholar 

  26. Akpakwu, G.A., Silva, B.J., Hancke, G.P., Abu-Mahfouz, A.M.: A survey on 5G networks for the internet of things: communication technologies and challenges. IEEE Access 6, 3619–3647 (2017). https://doi.org/10.1109/ACCESS.2017.2779844

    Article  Google Scholar 

  27. Lal, S., Taleb, T., Dutta, A.: NFV: security threats and best practices. IEEE Commun. Mag. 55, 211–217 (2017). https://doi.org/10.1109/MCOM.2017.1600899

    Article  Google Scholar 

  28. Cunha, V.A., da Silva, E., de Carvalho, M.B., Corujo, D., Barraca, J.P., Gomes, D., Granville, L.Z., Aguiar, R.L.: Network slicing security: challenges and directions. Internet Technol. Lett. 2, e125 (2019). https://doi.org/10.1002/itl2.125

    Article  Google Scholar 

  29. Thomasm, M.: 24 top internet-of-things (IOT) examples you should know. https://builtin.com/internet-things/iot-examples. Last accessed 5 Dec 2020

  30. Agiwal, M., Roy, A., Saxena, N.: Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutorials 18, 1617–1655 (2016). https://doi.org/10.1109/COMST.2016.2532458

    Article  Google Scholar 

  31. Alqarni, M.A.: Benefits of SDN for big data applications. In: 2017 14th Int. Conf. Smart Cities Improv. Qual. Life Using ICT IoT, HONET-ICT 2017, pp. 74–77 (2017). https://doi.org/10.1109/HONET.2017.8102206

  32. Zhong, H., Fang, Y., Cui, J.: LBBSRT: an efficient SDN load balancing scheme based on server response time. Futur. Gener. Comput. Syst. 68, 183–190 (2017). https://doi.org/10.1016/j.future.2016.10.001

    Article  Google Scholar 

  33. Ullah, H., Gopalakrishnan Nair, N., Moore, A., Nugent, C., Muschamp, P., Cuevas, M.: 5G communication: an overview of vehicle-to-everything, drones, and healthcare use-cases. IEEE Access 7, 37251–37268 (2019). https://doi.org/10.1109/ACCESS.2019.2905347

    Article  Google Scholar 

  34. Storck, C.R., Duarte-Figueiredo, F.: A survey of 5G technology evolution, standards, and infrastructure associated with vehicle-to-everything communications by internet of vehicles. IEEE Access 8, 117593–117614 (2020). https://doi.org/10.1109/ACCESS.2020.3004779

    Article  Google Scholar 

  35. Jahng, J.H., Park, S.K.: Simulation-based prediction for 5G mobile adoption. ICT Express 6, 109–112 (2020). https://doi.org/10.1016/j.icte.2019.10.002

    Article  Google Scholar 

  36. Wang, C.X., Bian, J., Sun, J., Zhang, W., Zhang, M.: A survey of 5g channel measurements and models. IEEE Commun. Surv. Tutorials 20, 3142–3168 (2018). https://doi.org/10.1109/COMST.2018.2862141

    Article  Google Scholar 

  37. Barakabitze, A.A., Ahmad, A., Mijumbi, R., Hines, A.: 5G network slicing using SDN and NFV: a survey of taxonomy, architectures, and future challenges. Comput. Netw. 167 (2020). https://doi.org/10.1016/j.comnet.2019.106984

  38. Li, Y., Su, X., Ding, A.Y., Lindgren, A., Liu, X., Prehofer, C., Riekki, J., Rahmani, R., Tarkoma, S., Hui, P.: Enhancing the internet of things with knowledge-driven software-defined networking technology: future perspectives. (2020)

    Google Scholar 

  39. Sattar, D., Matrawy, A.: Towards secure slicing: using slice isolation to mitigate DDoS attacks on 5G core network slices. arXiv. pp. 82–90 (2019)

    Google Scholar 

  40. Cao, J., Ma, M., Li, H., Ma, R., Sun, Y., Yu, P., Xiong, L.: A survey on security aspects for 3GPP 5G networks. IEEE Commun. Surv. Tutorials 22, 170–195 (2020). https://doi.org/10.1109/COMST.2019.2951818

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hasneen, J., Sadique, K.M. (2022). A Survey on 5G Architecture and Security Scopes in SDN and NFV. In: Iyer, B., Ghosh, D., Balas, V.E. (eds) Applied Information Processing Systems . Advances in Intelligent Systems and Computing, vol 1354. Springer, Singapore. https://doi.org/10.1007/978-981-16-2008-9_43

Download citation

Publish with us

Policies and ethics