Skip to main content

Role of Viruses in Nanoparticles Synthesis

  • Chapter
  • First Online:
Microbial Nanotechnology: Green Synthesis and Applications

Abstract

Nanotechnology has revolutionized with lots of applications in the medicinal field to prevent, detect and treat several biological problems including disease and infections. The plant virus nanoparticles (VNPs) and virus-like nanoparticles (VLPs) obtained through viral nanotechnology have become a versatile platform in several fields such as in obtaining high selectivity and specificity, optics and biosensing, drug delivery and targeting, nanocatalysis, next-generation nanoelectronics. The capsid proteins in plant viruses aid in the production of novel nanomaterials, also they can self-assemble and form well-organized icosahedral viruses with altered coat protein subunits, interior and exterior size properties. The virus interior is particularly used to protect the sensitive compounds and encapsulate them, while their exterior can be utilized to coat small molecules in a précised manner. These properties of viruses including their biocompatibility nature have led to the development of VNPs/VLPs to achieve targeted drug delivery. Plant viruses are natural immunogenic and thus they are altered to use as vaccines against various pathogens. In this chapter, we discuss their applications and role in nanoparticle synthesis to create an effective and alternate way related to both medicine and nanotechnology disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMV:

Brome Mosaic Virus

CarMV:

Carnation Mottle Virus

CCMV:

Cowpea Chlorotic Mottle Virus

CP:

Capsid protein

CPMV :

Cowpea Mosaic Virus

CPs:

Capsid proteins

DNA:

Deoxyribonucleic acid

DOX:

Doxorubicin

EGF:

Epidermal growth factor

HCRSV:

Hibiscus Chlorotic Ringspot Virus

MP:

Movement protein

MPs:

Movement proteins

MRFV:

Maize Rayado Fino Virus

PAA:

Polyacrylic acid

PC:

Polyacid

PEG:

Polyethylene glycol

PSA:

Polystyrenesulfonic acid

PSD:

Particle size distribution

RCNMV:

Red Clover Necrotic Mottle Virus

RNA:

Ribonucleic acid

SeMV:

Sesbania Mosaic Virus

ssRNA:

Single-stranded RNA

TYMV:

Turnip Yellow Mosaic Virus

VLPs:

Virus-like particles

VNPs:

Virus-based nanoparticles

References

  • Abraham A, Natraj U, Karande AA, Gulati A, Murthy MRN, Murugesan S et al (2016) Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles. Sci Rep 6:21803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali SG, Ansari MA, Alzohairy MA, Alomary MN, AlYahya S, Jalal M, Khan HM, Asiri SM, Ahmad W, Mahdi AA, El-Sherbeeny AM (2020) Biogenic gold nanoparticles as potent antibacterial and antibiofilm nano-antibiotics against Pseudomonas aeruginosa. Antibiotics 9(3):100

    Article  CAS  PubMed Central  Google Scholar 

  • Almatroudi A, Khadri H, Azam M, Rahmani AH, Khaleefah A, Khaleefah F, Khateef R, Ansari MA, Allemailem KS (2020) Antibacterial, antibiofilm and anticancer activity of biologically synthesized silver nanoparticles using seed extract of Nigella sativa. Processes 8(4):388

    Article  CAS  Google Scholar 

  • Alomary MN, Ansari MA (2021) Proanthocyanins-capped biogenic TiO2 nanoparticles with enhanced penetration, antibacterial and ROS mediated inhibition of bacteria proliferation and biofilm formation: a comparative approach. Chem Eur J. http://sci-hub.tw/10.1002/chem.202004828

  • Anandan S, Murali M, Ansari MA, Alzohairy MA, Alomary MN, Farha Siraj S, Sarjan HN, Mahendra C, Lakshmeesha TR, Hemanth Kumar NK, Ana E Ledesma, Amruthesh KN, Asna Urooj (2019) Biosynthesized ZnO-NPs from Morus indica Attenuates Methylglyoxal-Induced Protein Glycation and RBC Damage: In-Vitro, In-Vivo and Molecular Docking Study. Biomolecules 9(12):882. http://sci-hub.tw/10.3390/biom9120882

  • Ansari MA, Asiri SM (2021) Green synthesis, antimicrobial, antibiofilm and antitumor activities of superparamagnetic γ-Fe2O3 NPs and their molecular docking study with cell wall mannoproteins and peptidoglycan. Int J Biol Macromol 171:44–58

    Article  CAS  PubMed  Google Scholar 

  • Ansari MA, Thiruvengadam M, Farooqui Z, Rajakumar G, Jamal QM, Alzohairy MA, Almatroudi A, Alomary MN, Chung IM, Al-Suhaimi EA (2019) Nanotechnology, in silico and endocrine-based strategy for delivering paclitaxel and miRNA: prospects for the therapeutic management of breast cancer. Semin Cancer Biol. http://sci-hub.tw/10.1016/j.semcancer.2019.12.022

  • Ansari MA, Albetran HM, Alheshibri MH, Timoumi A, Algarou NA, Akhtar S, Slimani Y, Almessiere MA, Alahmari FS, Baykal A, Low IM (2020a) Synthesis of electrospun TiO2 nanofibers and characterization of their antibacterial and antibiofilm potential against gram-positive and gram-negative bacteria. Antibiotics 9(9):572

    Article  CAS  PubMed Central  Google Scholar 

  • Ansari MA, Murali M, Prasad D, Alzohairy MA, Almatroudi A, Alomary MN, Udayashankar AC, Singh SB, Asiri SM, Ashwini BS, Gowtham HG (2020b) Cinnamomum verum bark extract mediated green synthesis of ZnO nanoparticles and their antibacterial potentiality. Biomol Ther 10(2):336

    CAS  Google Scholar 

  • Ansari MA, Khan FB, Safdari HA, Almatroudi A, Alzohairy MA, Safdari M, Amirizadeh M, Equbal MJ, Hoque M (2021) Prospective therapeutic potential of Tanshinone IIA: an updated overview. Pharmacol Res 164:105364

    Article  CAS  PubMed  Google Scholar 

  • Azizgolshani O, Garmann RF, Cadena-Nava R, Knobler CM, Gelbart WM (2013) Reconstituted plant viral capsids can release genes to mammalian cells. Virology 441:12–17

    Article  CAS  PubMed  Google Scholar 

  • Balasamy RJ, Ravinayagam V, Alomari M, Ansari MA, Almofty SA, Rehman S, Dafalla H, Marimuthu PR, Akhtar S, Al Hamad M (2019) Cisplatin delivery, anticancer and antibacterial properties of Fe/SBA-16/ZIF-8 nanocomposite. RSC Adv 9(72):42395–42408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnhill HN, Reuther R, Ferguson PL, Dreher T, Wang Q (2007) Turnip yellow mosaic virus as a chemoaddressable bionanoparticle. Bioconjug Chem 18:852

    Article  CAS  PubMed  Google Scholar 

  • Basnayake VR, Sit TL, Lommel SA (2006) The genomic RNA packaging scheme of red clover necrotic mosaic virus. Virology 345:532

    Article  CAS  PubMed  Google Scholar 

  • Beijerinck MW (1898) Phytopathological classics. No. 7. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Bhuvaneshwari M, Subramanya HS, Gopinath K, Savithri HS, Nayudu MV, Murth MRN (1995) Structure of sesbania mosaic virus at 3 Å resolution. Structure 3:1021

    Article  CAS  PubMed  Google Scholar 

  • Bleeker EA, de Jong WH, Geertsma RE, Groenewold M, Heugens EH, Koers-Jacquemijns M et al (2013) Considerations on the EU definition of a nanomaterial: science to support policy making. Regul Toxicol Pharmacol 65:119–125. http://sci-hub.tw/10.1016/j.yrtph.2012.11.007

  • Bonifácio BV, da Silva PB, dos Santos Ramos MA, Negri KMS, Bauab TM, Chorilli M (2014) Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 9:1

    PubMed  CAS  Google Scholar 

  • Brumfield S, Willits D, Tang L, Johnson JE, Douglas T, Young M (2004) Heterologous expression of the modified coat protein of cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function. J Gen Virol 85:1049–1053

    Article  CAS  PubMed  Google Scholar 

  • Canady MA, Larson SB, Day J, McPherson A (1996) The crystallographic structure of Panicum mosaic virus (PMV). Nat Struct Biol 3:771

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Guenther RH, Sit TL, Opperman CH, Lommel SA, Willoughby JA (2014) Loading and release mechanism of red clover necrotic mosaic virus derived plant viral nanoparticles for drug delivery of doxorubicin. Small 10:5126–5136

    CAS  PubMed  Google Scholar 

  • Caspar DLD (1956) Structure of bushy stunt virus. Nature 177:476

    Article  Google Scholar 

  • Caspar DLD, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harbor Symp 27:1

    Article  CAS  Google Scholar 

  • Chen C, Kwak ES, Stein B, Kao CC, Dragnea B (2005) Packaging of gold particles in viral capsids. J Nanosci Nanotechnol 5:2029

    Article  CAS  PubMed  Google Scholar 

  • Cheng A, Speir JA, Yuan YA, Johnson JE, Wong SM (2009) Acta Crystallogr Sect F Struct Biol Cryst Commun 65:589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi KM, Kim K, Kwon IC, Kim IS, Ahn HJ (2012) Systemic delivery of siRNA by chimeric capsid protein: tumor targeting and RNAi activity in vivo. Mol Pharm 10:18–25

    Article  PubMed  CAS  Google Scholar 

  • Devalapally H, Chakilam A, Amiji MM (2007) Role of nanotechnology in pharmaceutical product development. J Pharm Sci 96(10):2547–2565

    Article  CAS  PubMed  Google Scholar 

  • Farouk F, Abdelmageed M, Ansari MA, Azzazy HM (2020) Synthesis of magnetic iron oxide nanoparticles using pulp and seed aqueous extract of Citrullus colocynth and evaluation of their antimicrobial activity. Biotechnol Lett 42(2):231–240

    Article  CAS  PubMed  Google Scholar 

  • Finch JTA, Klug A (1959) Structure of Poliomyelitis virus. Nature 183:1709

    Article  CAS  PubMed  Google Scholar 

  • Forrest SR (1997) Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem Rev 97:1793

    Article  CAS  PubMed  Google Scholar 

  • Galaway FA, Stockley PG (2013) MS2 virus-like particles: a robust, semisynthetic targeted drug delivery platform. Mol Pharm 10:59–68

    Article  CAS  PubMed  Google Scholar 

  • Gamez R (1969) A new leafhopper-borne virus of corn in Central America. Plant Dis Rep 53:929

    Google Scholar 

  • Gamez R (1980) Rayado Fino Virus disease of maize in the American tropics. Trop Pest Manag 26:26

    Article  Google Scholar 

  • Gamez R, Leon P (1988) The plant viruses, Vol. 3. Polyhedral virions with monopartite. Springer, Berlin

    Google Scholar 

  • Gibbs A (1999) Tymoviruses. In: Granoff A, Webster RG (eds) Encyclopedia of virology, vol 3. Academic Press, San Diego, p 1850

    Chapter  Google Scholar 

  • Govind K, Makinen K, Savithri HS (2012) Sesbanian mosaic virus (SeMV) infectious clone: possible mechanism of 3′ and 5′ end repair and role of polyprotein processing in viral replication. PLoS One 7:e31190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guenther CM, Kuypers BE, Lam MT, Robinson TM, Zhao J, Suh J (2014) Synthetic virology: engineering viruses for gene delivery. WIRES Nanomed Nanobiotechnol 6:548–558

    Article  CAS  Google Scholar 

  • Heise MT, Virgin HW (2013) Pathogenesis of viral infection. In: Knipe DM, Howley PM (eds) Field's virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, p 255

    Google Scholar 

  • Hovlid ML, Steinmetz NF, Laufer B, Lau JL, Kuzelka J et al (2012) Guiding plant virus particles to integrin-displaying cells. Nanoscale 4:3698–3705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang RK, Steinmetz NF, Fu CY, Manchester M, Johnson JE (2011) Transferrin-mediated targeting of bacteriophage HK97 nanoparticles into tumor cells. Nanomedicine 6:55–68

    Article  CAS  PubMed  Google Scholar 

  • Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y (2017) A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine 12:2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalal M, Ansari MA, Ali SG, Khan HM, Eldaif WA, Alrumman SA (2016) Green synthesis of silver nanoparticles using leaf extract of Cinnamomum tamala and its antimicrobial activity against clinical isolates of bacteria and fungi. Int J Adv Res 4(12):428–440

    Article  CAS  Google Scholar 

  • Kavya JB, Murali M, Manjula S, Basavaraj GL, Prathibha M, Jayaramu SC, Amruthesh KN (2020) Genotoxic and antibacterial nature of biofabricated zinc oxide nanoparticles from Sida rhombifolia Linn. J Drug Deliv Sci Technol 60: 101982. http://sci-hub.tw/10.1016/j.jddst.2020.101982

  • Ke J, Schmidt T, Chase E, Bozarth RF, Smith TJ (2004) Structure of Cowpea mottle virus: a consensus in the genus Carmovirus. Virology 321:349

    Article  CAS  PubMed  Google Scholar 

  • Khan AA, Alanazi AM, Jabeen M, Chauhan A, Ansari MA (2019) Therapeutic potential of functionalized siRNA nanoparticles on regression of liver cancer in experimental mice. Sci Rep 9(1):1–6

    Article  Google Scholar 

  • Klem MT, Willits D, Young M, Douglas T (2003) 2-D array formation of genetically engineered viral cages on au surfaces and imaging by atomic force microscopy. J Am Chem Soc 125:10806–10807

    Article  CAS  PubMed  Google Scholar 

  • Koenig R (ed) (1988) RNA genomes. Praeger Publ, New York, p 213

    Google Scholar 

  • Koudelka KJ et al (2015) Virus-based nanoparticles as versatile nanomachines. Annu Rev Virol 2(1):379–401. http://sci-hub.tw/10.1146/annurev-virology-100114-055141

  • Lane LC (1981) Handbook of plant virus infections, vol 333. Elsevier/North Holland, London

    Google Scholar 

  • Larson SB, Lucas RW, McPherson A (2005) Crystallographic structure of the T=1 particle of brome mosaic virus. J Mol Biol 346:815

    Article  CAS  PubMed  Google Scholar 

  • Lin T, Johnson JE (2003) A statistical approach to computer processing of cryo electron microscope images: virion classification and 3-D reconstruction. Adv Virus Res 62:167

    Article  CAS  PubMed  Google Scholar 

  • Lockney DM, Guenther RN, Loo L, Overton W, Antonelli R, Clark J et al (2011) Design of virus-based nanomaterials for medicine, biotechnology, and energy. Bioconjug Chem 22:67

    Article  CAS  PubMed  Google Scholar 

  • Loo L, Guenther RH, Basnayake VR, Lommel SA, Franzen S (2006) Encapsulation of negatively charged cargo in MS2 viral capsids. J Am Chem Soc 128:4502

    Article  CAS  PubMed  Google Scholar 

  • Loo L, Guenther RH, Lommel SA, Franzen S (2007) Encapsidation of nanoparticles by red clover necrotic mosaic virus. J Am Chem Soc 129:11111

    Article  CAS  PubMed  Google Scholar 

  • Luther W (2004) Industrial application of nanomaterials—chances and risks. Future Technologies Division of VDI TechnologiezentrumGmbH, Düsseldorf

    Google Scholar 

  • Lvov Y, Haas H, Decher G, Mohwald H, Mikhailov A, Mtchedlishvily B et al (1994) Challenges and breakthroughs in recent research on self-assembly. Langmuir 10:4232

    Article  CAS  Google Scholar 

  • Ma Y, Nolte RJM, Cornelissen JJLM (2012) Virus-based nanocarriers for drug delivery. Adv Drug Deliv Rev 64:811

    Article  CAS  PubMed  Google Scholar 

  • Manchester M, Singh P (2006) Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. Adv Drug Deliv Rev 58:1505

    Article  CAS  PubMed  Google Scholar 

  • Morris TJ, Carrington JC (1988) In: Koenig R (ed) The plant viruses, polyhedral virions with monopartite RNA genomes, vol 3. Praeger Publ, New York, p 73

    Chapter  Google Scholar 

  • Murali M, Anandan S, Ansari MA, Alzohairy MA, Alomary MN, Asiri SMM, Ahmad A, Thriveni MC, Brijesh Singh S, Gowtham HG, Aiyaz M, Chandrashekar S, Asna U, Amruthesh KN (2021) Genotoxic and Cytotoxic properties of zinc oxide nanoparticles phyto-fabricated from the obscure morning glory plant Ipomoea obscura (L.) Ker Gawl. Molecules 26(4): 891. http://sci-hub.tw/10.3390/molecules26040891

  • Narayanan KB, Han SS (2017a) Icosahedral plant viral nanoparticles - bioinspired synthesis of nanomaterials/nanostructures. Adv Colloid Interf Sci 248:1–19. http://sci-hub.tw/10.1016/j.cis.2017.08.005

  • Narayanan KB, Han SS (2017b) Helical plant viral nanoparticles-bioinspired synthesis of nanomaterials and nanostructures. Bioinspir Biomim 12:031001

    Article  PubMed  CAS  Google Scholar 

  • Natilla A, Hammond RW (2011) Structural and biological properties of Cucumber mosaic virus particles carrying hepatitis C virus-derived epitopes. J Virol Methods 178:209

    Article  CAS  PubMed  Google Scholar 

  • Noueiry AO, Ahlquist P (2003) Brome mosaic virus RNA replication: revealing the role of the host in RNA virus replication. Annu Rev Phytopathol 41:77

    Article  CAS  PubMed  Google Scholar 

  • Oh J-W, Han D-W (2020) Virus-based nanomaterials and nanostructures. Nano 10:567

    CAS  Google Scholar 

  • Onoue S, Yamada S, Chan HK (2014) Nanodrugs: pharmacokinetics and safety. Int J Nanomedicine 9:1025–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra JK, Das G, Fraceto LF, Vangelie E, Campos R, Rodriguez P et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:71

    Article  CAS  Google Scholar 

  • Pogue GP, Lindbo JA, Garger SJ, Fitzmaurice WP (2002) Making an ally from an enemy: plant virology and the new agriculture. Annu Rev Phytopathol 40:45

    Article  CAS  PubMed  Google Scholar 

  • Prasad KS, Prasad SK, Ansari MA, Alzohairy MA, Alomary MN, AlYahya S, Srinivasa C, Murali M, Ankegowda VM, Shivamallu C (2020) Tumoricidal and bactericidal properties of ZnONPs synthesized using Cassia auriculata leaf extract. Biomol Ther 10(7):982

    CAS  Google Scholar 

  • Rajakumar G, Zhang XH, Gomathi T, Wang SF, Azam Ansari M, Mydhili G, Nirmala G, Alzohairy MA, Chung IM (2020) Current use of carbon-based materials for biomedical applications—a prospective and review. PRO 8(3):355

    CAS  Google Scholar 

  • Rehman S, Jermy R, Asiri SM, Shah MA, Farooq R, Ravinayagam V, Ansari MA, Alsalem Z, Al Jindan R, Reshi Z, Khan FA (2020) Using Fomitopsis pinicola for bioinspired synthesis of titanium dioxide and silver nanoparticles, targeting biomedical applications. RSC Adv 10(53):32137–32147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21:836

    Article  PubMed Central  CAS  Google Scholar 

  • Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E et al (2013) Single-domain magnetic nanoparticles in an alternating magnetic field as mediators of local deformation of the surrounding macromolecules. Chem Rev 113:1904

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui AA, Iram F, Siddiqui S, Sahu K (2014) Role of natural products in drug discovery process. Int J Drug Dev Res 6(2):172–204

    CAS  Google Scholar 

  • Singh P, Gonzalez MJ, Manchester M (2006) Using viruses as nanomedicines. Drug Dev Res 67:23

    Article  CAS  Google Scholar 

  • Singh L et al (2017) The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis 4(4):105–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soares S, Sousa J, Pais A, Vitorino C (2018) Nanomedicine: principles, properties, and regulatory issues. Front Chem 6(August):1–15. http://sci-hub.tw/10.3389/fchem.2018.00360

  • Soto CM, Blum AS, Wilson CD, Lazorcik J, Kim M, Gnade B et al (2004) Self-assembled artificial viral capsid decorated with gold nanoparticles. Electrophoresis 25:2901

    Article  CAS  PubMed  Google Scholar 

  • Sumanth B, Lakshmeesha TR, Ansari MA, Alzohairy MA, Udayashankar AC, Shobha B, Niranjana SR, Srinivas C, Almatroudi A (2020) Mycogenic synthesis of extracellular zinc oxide nanoparticles from Xylaria acuta and its nanoantibiotic potential. Int J Nanomedicine 15:8519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy MK, Sinniah UR (2016) Patchouli (Pogostemon cablin Benth.): botany, agrotechnology and biotechnological aspects. Ind Crop Prod 87:161–176

    Article  CAS  Google Scholar 

  • Tang JH, Johnson JM, Dryden KA, Young MJ, Zlotnick A, Johnson JE (2006) The role of subunit hinges and molecular “switches” in the control of viral capsid polymorphism. J Struct Biol 154:59

    Article  CAS  PubMed  Google Scholar 

  • Thilakarathna SH, Rupasinghe H (2013) Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 5:3367–3387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Q, Kaltgrad E, Lin T, Johnson JE, Finn MG (2002) Natural supramolecular building blocks. Wild-type cowpea mosaic virus. Chem Biol 9:805

    Article  CAS  PubMed  Google Scholar 

  • Wirth T, Parker N, Ylä-Herttuala S (2013) History of gene therapy. Gene 525:162–169

    Article  CAS  PubMed  Google Scholar 

  • Yan D, Wei YQ, Guo HC, Sun SQ (2015) The true story and advantages of RNA phage capsids as nanotools. Appl Microbiol Biotechnol 99:10415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Peters JI, Williams RO (2008) Inhaled nanoparticles – a current review. Int J Pharm 356(1–2):239–247

    Article  CAS  PubMed  Google Scholar 

  • Yildiz I, Shukla S, Steinmetz NF (2011) Applications of viral nanoparticles in medicine. Curr Opin Biotechnol 22:901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ylä-Herttuala S (2012) Endgame: Glybera finally recommended for approval as the first gene therapy drug in the European Union. Mol Ther 20:1831–1832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng Q, Wen H, Wen Q, Chen X, Wang Y et al (2013) Cucumber mosaic virus as drug delivery vehicle for doxorubicin. Biomaterials 34:4632–4642

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrashekar Srinivasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srinivasa, C. et al. (2021). Role of Viruses in Nanoparticles Synthesis. In: Ansari, M.A., Rehman, S. (eds) Microbial Nanotechnology: Green Synthesis and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-16-1923-6_6

Download citation

Publish with us

Policies and ethics