Skip to main content

Synthesis and Characterization of Quantum Cutting Phosphor Materials

  • Chapter
  • First Online:
Handbook on Synthesis Strategies for Advanced Materials

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

The rare earth ions produce photoluminescence in the entire range of the electromagnetic spectrum particularly in the UV, vis and NIR regions. The present chapter describes the synthesis of quantum cutting phosphor materials using different methods, such as solid-state reaction, combustion, sol–gel, hot-injection, hydrothermal, along with a melting-quenching method for the glass materials and studies the photoluminescence of the rare earth doped quantum cutting phosphor materials. Quantum cutting (QC) is a downconversion (DC) process in which the conversion of a high-energy photon into the two or more low-energy photons takes place. This process not only takes place in the singly rare earth doped materials but also in the doubly and/or triply rare earth doped materials. The difference is only in the energy transfer route between activator and sensitizer ions. This occurs due to cooperative energy transfer (CET) process. In energy transfer process, the photoluminescence intensity of sensitizer ion decreases whereas the photoluminescence intensity of activator ion increases accordingly. The change in photoluminescence intensity of these ions is highly concentration dependent. The photoluminescence intensity versus pump power measurements shows that the photoluminescence intensity of the visible region is a linear process while that of the NIR region occurs due to nonlinear process. The change in photoluminescence intensity of the sensitizer ions can be established from the lifetime measurements. The preparation and characterization of different rare earth-based quantum cutting materials and their applications in large numbers of the emerging fields have been also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BG:

Band gap

CET:

Cooperative energy transfer

CTS:

Charge transfer state

DC:

Downconversion

DS:

Downshifting

ET:

Energy transfer

ETE:

Energy transfer efficiency

FPD:

Flat panel devices

Hg:

Mercury

LEDs:

Light-emitting diodes

LT:

Lifetime

NIR:

Near infrared

µm:

Micro-meter

nm:

Nano-meter

PL:

Photoluminescence

PLE:

Photoluminescence excitation

PPD:

Plasma panel devices

QC:

Quantum cutting

QDs:

Quantum dots

QE:

Quantum efficiency

QY:

Quantum yield

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

UC:

Upconversion

UV:

Ultraviolet

Vis:

Visible

wLEDs:

White light-emitting diodes

XRD:

X-ray diffraction

References

  1. Han B, Liang H, Huang Y, Tao Y, Su Q (2010) Vacuum ultraviolet-visible spectroscopic properties of Tb3+ in Li(Y, Gd)(PO3)4: tunable emission, quantum cutting, and energy transfer. J Phys Chem C 114:6770

    Article  CAS  Google Scholar 

  2. Xia Z, Meijerink A (2017) Ce3+-doped garnet phosphors: composition modification, luminescence properties and applications. Chem Soc Rev 46:275–299

    Article  CAS  Google Scholar 

  3. Xia Z, Liu Q (2016) Progress in discovery and structural design of color conversion phosphors for LEDs. Prog Mater Sci 84:59–117

    Article  CAS  Google Scholar 

  4. Hou D, Liang H, Xie M, Ding X, Zhong J, Su Q, Tao Y, Huang Y, Gao Z (2011) Bright green-emitting, energy transfer and quantum cutting of Ba3Ln(PO4)3:Tb3+ (Ln = La, Gd) under VUV-UV excitation. Opt Express 19:11071–11083

    Article  CAS  Google Scholar 

  5. Swarnkar A, Mir WJ, Nag A (2018) Can B-Site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X=Cl, Br, I) perovskites? ACS Energy Lett 3:286–289

    Article  CAS  Google Scholar 

  6. Das AS, Guria AK, Pradhan N (2019) Insights of doping and the photoluminescence properties of Mn-doped perovskite nanocrystals. J Phys Chem Lett 10:2250–2257

    Article  Google Scholar 

  7. Yadav RS, Monika, Rai SB, Dhoble SJ (2020) Recent advances on morphological changes in chemically engineered rare earth doped phosphor materials. Prog Solid State Chem 57:100267

    Google Scholar 

  8. Singh P, Yadav RS, Singh P, Rai SB (2021) Upconversion and downshifting emissions of Ho3+-Yb3+ co-doped ATiO3 perovskite phosphors with temperature sensing properties in Ho3+-Yb3+ co-doped BaTiO3 phosphor. J Alloys Compds 855:157452.

    Google Scholar 

  9. Yadav RS, Monika, Dhoble SJ, Rai SB (2020) Optical properties of lanthanide-based pyrophosphate phosphor materials. Nova Science Publishers Inc., USA, pp 47–69

    Google Scholar 

  10. Rai E, Yadav RS, Kumar D, Singh AK, Fullari V, Rai SB (2020) Influence of Bi3+ ion on structural, optical, dielectric and magnetic properties of Eu3+ doped LaVO4 phosphor. Spectrochim Acta Part A 243:118787

    Google Scholar 

  11. Yadav RS, Monika, Rai E, Purohit LP, Rai SB (2020) Realizing enhanced downconversion photoluminescence and high color purity in Dy3+ doped MgTiO3 phosphor in presence of Li+ ion. J Lumin 217:116810

    Google Scholar 

  12. Baig N, Yadav RS, Dhoble NS, Barai VL, Dhoble SJ (2019) Near UV excited multi-color photoluminescence in RE3+ (RE = Tb, Sm, Dy and Eu) doped Ca2Pb3(PO4)3Cl phosphors. J Lumin 215:116645

    Google Scholar 

  13. Yadav RS, Rai SB (2017) Structural analysis and enhanced photoluminescence via host sensitization from a lanthanide doped BiVO4 nano-phosphor. J Phys Chem Solids 110:211–217

    Article  CAS  Google Scholar 

  14. Monika, Yadav RS, Bahadur A, Rai SB (2020) Near-infrared light excited highly pure green upconversion photoluminescence and intrinsic optical bistability sensing in a Ho3+-Yb3+ co-doped ZnGa2O4 phosphor through Li+ doping. J Phys Chem C 124:10117–10128

    Google Scholar 

  15. Ningthoujam RS (2012)Enhancement of luminescence by rare earth ions doping in semiconductor host. In: Rai SB, Dwivedi Y (eds) Publisher: Nova Science Publisher Inc, USA, Chapter 7, pp 145–182

    Google Scholar 

  16. Yadav RS, Rai SB (2017) Surface analysis and enhanced photoluminescence via Bi3+ doping in a Tb3+ doped Y2O3 nano-phosphor under UV excitation. J Alloys Compds 700:228–237

    Article  CAS  Google Scholar 

  17. Mir WJ, Swarnkar A, Nag A (2019) Postsynthesis Mn-doping in CsPbI3 nanocrystals to stabilize the black perovskite phase. Nanoscale 11:4278–4286

    Article  CAS  Google Scholar 

  18. Bahadur A, Yadav RS, Yadav RV, Rai SB (2017) Multimodal emissions from Tb3+-Yb3+ co-doped lithium borate glass: Upconversion, downshifting and quantum cutting. J Solid State Chem 246:81–86

    Article  CAS  Google Scholar 

  19. Yuan R, Liu J, Zhang H, Zhang Z, Shao G, Liang X, Xiang W (eds) Eu3+-doped CsPbBr1.5I1.5 quantum dots glasses: a strong competitor among red fluorescence solid materials. J Am Ceram Soc 101:4927–4932

    Google Scholar 

  20. Zhou Y, Chen J, Bakr OM, Sun H-T (2018) Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications. Chem Mater 30:6589–6613

    Article  CAS  Google Scholar 

  21. Liu RS, Liu YH, Bagkar NC, Hu SF (2007) Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions. Appl Phys Lett 91:061119

    Google Scholar 

  22. Parchur AK, Ansari AA, Singh BP, Hasan TN, Syed NA, Rai SB, Ningthoujam RS (2014) Enhanced luminescence of CaMoO4: Eu by core@shell formation and its hyperthermia study after hybrid formation with Fe3O4: Cytotoxicity assessing on human liver cancer cells and mesanchymal stem cells. Integr Biol 6:53–64

    Article  CAS  Google Scholar 

  23. Phaomei G, Ningthoujam RS, Singh WR, Loitongbam RS, Singh NS, Rath A, Juluri RR, Vatsa RK (2011) Luminescence switching behavior through redox reaction in Ce3+ co-doped LaPO4:Tb3+ nanorods: Re-dispersible and polymer film. Dalton Trans 40:11571

    Article  CAS  Google Scholar 

  24. Singh NS, Ningthoujam RS, Singh SD, Viswanadh B, Manoj N, Vatsa RK (2010) Preparation of highly crystalline blue emitting MVO4:Tm3+ (M = Gd, Y) spherical nanoparticles: effects of activator concentration and annealing temperature on luminescence, lifetime and quantum yield. J Lumin 130:2452

    Article  Google Scholar 

  25. Singh LR, Ningthoujam RS, Singh NS, Singh SD (2009) Probing Dy3+ ions on the surface of nanocrystalline YVO4: luminescence study. Opt Mater 32:286

    Article  CAS  Google Scholar 

  26. Rao CM, Sudarsan V, Ningthoujam RS, Gautam UK, Vatsa RK, Vinu A, Tyagi AK (2008) Luminescence studies on low temperature synthesized ZnGa2O4:Ln3+ (Ln = Tb and Eu) nanoparticles. J Nanosci Nanotech 8:5776

    Article  CAS  Google Scholar 

  27. Ningombam GS, Singh NR, Ningthoujam RS (2017) Controlled synthesis of CaWO4: Sm3+ microsphere particles by a reverse-micelle method and their energy transfer rate in luminescence. Colloids Surf A 518:249–262

    Article  CAS  Google Scholar 

  28. Ningthoujam RS, Sharma A, Sharma KS, Barick KC, Hassan PA, Vatsa RK (2015) Roles of solvent, annealing and Bi3+co-doping on the crystal structure and luminescence properties of YPO4:Eu3+ nanoparticles. RSC Adv 5:68234–68242

    Article  CAS  Google Scholar 

  29. Wangkhem R, Yaba T, Singh NS, Ningthoujam RS (2018) Red emission enhancement from CaMoO4:Eu3+ by co-doping of Bi3+ for near UV/blue LED pumped white pcLEDs: Energy transfer studies. J Appl Phys 123:124303

    Google Scholar 

  30. Soni AK, Joshi R, Jangid K, Tewari R, Ningthoujam RS (2018) Low temperature synthesized SrMoO4:Eu3+ nanophosphors functionalized with ethylene glycol: a comparative study of synthesize route, morphology, luminescence and annealing. Mater Res Bull 103:1–12

    Article  CAS  Google Scholar 

  31. Parchur AK, Ningthoujam RS (2012) Preparation, microstructure and crystal structure studies of Li+ co-doped YPO4:Eu3+. RSC Adv 2:10854–10858

    Article  CAS  Google Scholar 

  32. Sahu NK, Singh NS, Ningthoujam RS, Bahadur D (2014) Ce3+ sensitized GdPO4:Tb3+ nanorods: An investigation on energy transfer, luminescence switching and quantum yield. ACS Photonics 1:337–346

    Article  CAS  Google Scholar 

  33. Phaomei G, Singh WR, Singh NS, Ningthoujam RS (2013) Luminescence properties of Ce3+ co-activated LaPO4:Dy3+ nanorods prepared in different solvents and tunable blue to white light emission from Eu3+ co-activated LaPO4:Dy3+, Ce3+. J Lumin 134:649–656

    Article  CAS  Google Scholar 

  34. Ningombam GS, Khundrakpam NS, Thiyam DS, Ningthoujam RS, Singh NR (2020) Salt assisted size-controlled synthesis and luminescence studies of single phase CaWO4:Dy3+: an insight into morphological evolution, energy transfer and colour evaluation. New J Chem 44:4217–4228

    Article  CAS  Google Scholar 

  35. Dutta DP, NingthoujamRS, Tyagi AK (2012) Luminescence properties of Sm3+ doped YPO4: effect of solvent, heat-treatment, Ca2+/W6+-co-doping and its hyperthermia application. AIP-Advances 2:042184

    Google Scholar 

  36. Singh LR, Ningthoujam RS (2011) Critical view on luminescence properties of Y2O3:Eu3+ after dispersion in SiO2. Chem Phys Lett 510:120

    Article  CAS  Google Scholar 

  37. PrasadAI, Singh LR, Joshi R, Ningthoujam RS (2018) Luminescence study on crystalline phase of Y2Si2O7 from mesoporous silica and Y2O3: Ln3+ at 900 °C. AIP Adv 8:105310

    Google Scholar 

  38. Loitongbam RS, Singh NS, Singh WR, Ningthoujam RS (2013) Observation of exceptional strong emission transitions 5Dj (j = 1–3) to 7Fj (j = 1–3): Multicolor from single Eu3+ ion doped La2O3 nanoparticles. J Lumin 134:14–23

    Article  CAS  Google Scholar 

  39. Singh LP, Srivastava SK, Mishra R, Ningthoujam RS (2014) Multifunctional hybrid nanomaterials from water dispersible CaF2:Eu3+, Mn2+ and Fe3O4 for luminescence and hyperthermia application. J Phys Chem C 118:18087–18096

    Article  CAS  Google Scholar 

  40. Singh LP, Jadhav NV, Sharma S, Pandey BN, Srivastava SK, Ningthoujam RS (2015) Hybrid nanomaterials YVO4: Eu/Fe3O4 for optical imaging and hyperthermia in cancer cells. J Mater Chem C 3:1965–1975

    Article  CAS  Google Scholar 

  41. Yaiphaba N, Ningthoujam RS, Singh NS, Vatsa RK, Singh NR (2010) Probing of inversion symmetry site in Eu3+ doped GdPO4 by luminescence study: concentration and annealing effect. J Lumin 130:174

    Article  CAS  Google Scholar 

  42. Sahu NK, Ningthoujam RS, Bahadur D (2012) Disappearance and recovery of luminescence in GdPO4:Eu3+ nanorods: Propose to water/OH. release under near infrared and gamma irradiations. J Appl Phys 112:014306

    Google Scholar 

  43. Yaiphaba N, Ningthoujam RS, Singh NR, Vatsa RK (2010) Luminescence properties of redispersible Tb3+-Doped GdPO4 nanoparticles prepared by an ethylene glycol route. Eur J Inorg Chem 2682

    Google Scholar 

  44. Meetei SD, Singh SD, Singh NS, Sudarsan V, Ningthoujam RS, Tyagi M, Gadkari SC, Tewari R, Vatsa RK (2012) Crystal structure and photoluminescence correlations in white emitting nanocrystalline ZrO2:Eu3+ phosphor: effect of doping and annealing. S. D. Meetei, S. D. Singh, N. S. Singh, V. Sudarsan, R. S. Ningthoujam, M. Tyagi, S. C. Gadkari, R. Tewari and R. K. Vatsa. J. Lumin. 132:537–544

    Google Scholar 

  45. Singh LR, Ningthoujam RS, Sudarsan V, Singh SD, Kulshreshtha SK (2008) Probing of surface Eu3+ ions present in ZnO:Eu nanoparticles by covering ZnO: Eu core with Y2O3 shell: Luminescence study. J Lumin 128:1544

    Google Scholar 

  46. Ningthoujam RS, Gajbhiye NS, Ahmed A, Umre SS, Sharma SJ (2008) Re-dispersible Li+ and Eu3+ co-doped nanocrystalline ZnO: Luminescence and EPR studies. J Nanosci Nanotech 8:3059

    Article  CAS  Google Scholar 

  47. Gajbhiye NS, Ningthoujam RS, Ahmed A, Panda DK, Umre SS, Sharma SJ (2008) Re-dispersible Li+ and Eu3+ co-doped CdS nanoparticles: luminescence studies. Pramana J Phys 70:313

    Article  CAS  Google Scholar 

  48. Singh LR, Ningthoujam RS (2010)Critical view on energy transfer, site symmetry, improvement in luminescence of Eu3+, Dy3+ doped YVO4 by core-shell formation. J Appl Phys 107:104304

    Google Scholar 

  49. Ningthoujam RS, Singh LR, Sudarsan V, Singh SD (2009) Energy transfer process and optimum emission studies in luminescence of core-shell nanoparticles: YVO4: Eu-YVO4 and surface state analysis. J Alloys Comp 484:782

    Article  CAS  Google Scholar 

  50. Ningthoujam RS, Sudarsan V, Vatsa RK, Kadam RM, Jagannath, Gupta A (2009) Photoluminescence studies on Eu doped TiO2 nanoparticles. J Alloys Comp 486:864

    Google Scholar 

  51. Ningthoujam RS, Vatsa RK, Vinu A, Ariga K, Tyagi AK (2009) Room temperature exciton formation in SnO2 nanocrystals in SiO2: Eu matrix: Quantum dot system, heat-treatment effect. J Nanosci Nanotech 9:2634

    Article  CAS  Google Scholar 

  52. Okram R, Yaiphaba N, Ningthoujam RS, Singh NR (2014) Is higher ratio of monoclinic to tetragonal in LaVO4 a better luminescence host? Redispersion and polymer film formation. Inorg Chem 53:7204–7213

    Article  CAS  Google Scholar 

  53. Soni AK, Joshi R, Singh BP, Naveen Kumar N, Ningthoujam RS, Near-infrared- and magnetic-field-responsive NaYF4:Er3+/Yb3+@ SiO2@ AuNP@Fe3O4 nanocomposites for hyperthermia applications induced by fluorescence resonance energy transfer and surface plasmon absorption. ACS Appl Nano Mater 2:7350−7361

    Google Scholar 

  54. Soni AK, Ningthoujam RS (2018) Observation of energy transfer phenomenon via up and down conversion in Eu3+ ions for BaMoO4:Er3+-Eu3+ nanophosphor. AIP Conf Proc 1942 (1):140004

    Google Scholar 

  55. Yu D, Yu T, van Bunningen AJ, Zhang Q, Meijerink A, Rabouw FT (2020) Understanding and tuning blue-to-near-infrared photon cutting by the Tm3+/Yb3+ couple. Light Sci Appl 9:107

    Article  CAS  Google Scholar 

  56. van der Ende BM, Aarts L, Meijerink A (2009) Near-infrared quantum cutting for photovoltaics. Adv Mater 21:3073–3077

    Article  Google Scholar 

  57. Huang XY, Han S, Huang W, Liu XG (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42:173–201

    Article  CAS  Google Scholar 

  58. Wegh RT, Donker H, Oskam KD, Meijerink A (1999) Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Sci 283:663–666

    Article  CAS  Google Scholar 

  59. Creutz SE, Fainblat R, Kim Y, Siena, De MC, Gamelin DR (2017) A selective cation exchange strategy for the synthesis of colloidal Yb3+-doped chalcogenide nanocrystals with strong broadband visible absorption and long-lived near-infrared emission. J Am Chem Soc 139:11814–11824

    Google Scholar 

  60. Timmerman D, Izeddin I, Stallinga P, Yassievich IN, Gregorkiewicz T (2008) Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications. Nat Photonics 2:105–109

    Article  CAS  Google Scholar 

  61. Strumpel C, McCann M, Beaucarne G, Arkhipov V, Slaouic A, Svrcek V, del Canizo C, Tobias I (2007) Modifying the solar spectrum to enhance silicon solar cell efficiency- an overview of available materials. Solar Energy Solar Cells. 91:238–249

    Article  Google Scholar 

  62. Yu DC, Ye S, Peng MY, Zhang QY, Wondraczek L (2012) Sequential three-step three-photon near-infrared quantum splitting in β-NaYF4:Tm3+. Appl Phys Lett 100:191911

    Google Scholar 

  63. Chen XB, Li S, Salamo GJ, Li YL, He LZ, Yang GJ, Gao Y, Liu QL (2015) Sensitized intense near-infrared downconversion quantum cutting three-photon luminescence phenomena of the Tm3+ ion activator in Tm3+Bi3+:YNbO4 powder phosphor. Opt Express 23:A51–A61

    Article  CAS  Google Scholar 

  64. Piper WW, DeLuca JA, Ham FS (1974) Cascade fluorescent decay in Pr3+-doped fluorides: achievement of a quantum yield greater than unity for emission of visible light. J Lumin 8:344–348

    Article  CAS  Google Scholar 

  65. Sommerdijk JL, Bril A, de Jager AW (1974) Two photon luminescence with ultraviolet excitation of trivalent praseodymium. J Lumin 8:341–343

    Article  CAS  Google Scholar 

  66. Yu DC, Martın-Rodrıguez R, Zhang QY, Meijerink A, Rabouw FT (2015) Multi-photon quantum cutting in Gd2O2S: Tm3+ to enhance the photo-response of solar cells. Light: Sci Appl 4:e344

    Google Scholar 

  67. Yadav RS, Verma RK, Bahadur A, Rai SB (2015) Structural characterizations and intense green upconversion emission in Yb3+, Pr3+ co-doped Y2O3 nano-phosphor. Spectrochim Acta Part A 137:357–362

    Article  CAS  Google Scholar 

  68. Zhang GG, Liu CM, Wang J, Kuang XJ, Su Q (2012) A dual-mode solar spectral converter CaLaGa3S6O:Ce3+, Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism. J Mater Chem 22:2226–2232

    Article  CAS  Google Scholar 

  69. Pan G, Bai X, Yang D, Chen X, Jing P, Qu S, Zhang L, Zhou D, Zhu J, Xu W, Dong B, Song H (2017) Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties. Nano Lett 17:8005–8011

    Article  CAS  Google Scholar 

  70. Milstein TJ, Kroupa DM, Gamelin DR (2018) Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl3 nanocrystals. Nano Lett 18:3792–3799

    Article  CAS  Google Scholar 

  71. Ishii A, Miyasaka T (2020) Sensitized Yb3+ luminescence in CsPbCl3 film for highly efficient near-infrared light-emitting diodes. Adv Sci 7:1903142

    Article  CAS  Google Scholar 

  72. Zhou D, Sun R, Xu W, Ding N, Li D, Chen X, Pan G, Bai X, Song H (2019) Impact of host composition, codoping, or tridoping on quantum-cutting emission of ytterbium in halide perovskite quantum dots and solar cell applications. Nano Lett 19:6904–6913

    Article  CAS  Google Scholar 

  73. Kroupa DM, Roh JY, Milstein TJ, Creutz SE, Gamelin DR (2018) Quantum-cutting ytterbium-doped CsPb(Cl1-xBrx)3 perovskite thin films with photoluminescence quantum yields over 190%. ACS Energy Lett 3:2390–2395

    Article  CAS  Google Scholar 

  74. Cohen TA, Milstein TJ, Kroupa DM, MacKenzie JD, Luscombe C, Gamelin DR (2019) Quantum-cutting Yb3+-doped perovskite nanocrystals for monolithic bilayer luminescent solar concentrators. J Mat Chem A 7:9279–9288

    Article  CAS  Google Scholar 

  75. Crane MJ, Kroupa DM, Roh JYD, Anderson RT, Smith MD, Gamelin DR (2019) Single-source vapor deposition of quantum-cutting Yb3+:CsPb(Cl1-XBrx)3 and other complex metal-halide perovskites. ACS Appl Energy Mater 2:4560–4565

    Article  CAS  Google Scholar 

  76. Crane MJ, Kroupa DM, Gamelin DR (2019) Detailed-balance analysis of Yb3+:CsPb(Cl1-xBrx)3 quantum-cutting layers for high-efficiency photovoltaics under real-world conditions. Energy Environ Sci 12:2486–2495

    Article  CAS  Google Scholar 

  77. Milstein TJ, Kluherz TK, Kroupa DM, Erickson CS, De Yoreo JJ, Gamelin DR (2019) Anion exchange and the quantum-cutting energy threshold in ytterbium-doped CsPb(Cl1-xBrx)3 perovskite nanocrystals. Nano Lett 19:1931–1937

    Article  CAS  Google Scholar 

  78. Luo X, Ding T, Liu X, Liu Y, Wu K (2019) Quantum-cutting luminescent solar concentrators using ytterbium-doped perovskite nanocrystals. Nano Lett 19:338–341

    Article  CAS  Google Scholar 

  79. Zeng M, Artizzu F, Liu J, Singh S, Locardi F, Mara D, Hens Z, Deun RV (2020) Boosting the Er3+ 1.5 μm luminescence in CsPbCl3 perovskite nanocrystals for photonic devices operating at telecommunication wavelengths. ACS Appl Nano Mater 3:4699–4707

    Google Scholar 

  80. Yeon J, Roh D, Smith MD, Crane MJ, Biner D, Milstein TJ, Krämer KW, Gamelin DR (2020) Yb3+ speciation and energy-transfer dynamics in quantum-cutting Yb3+-doped CsPbCl3 perovskite nanocrystals and single crystals. Phys Rev Mater 4:105405

    Google Scholar 

  81. Li YQ, de With G, Hintzen HT (2005) Luminescence of a new class of UV-blue-emitting phosphors MSi2O2−δN2+2/3δ:Ce3+ (M = Ca, Sr, Ba). J Mater Chem 15:4492–4496

    Article  CAS  Google Scholar 

  82. Li YQ, Delsing ACA, De With G, Hintzen HT (2005) Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors. Chem Mater 17:3242–3248

    Article  CAS  Google Scholar 

  83. Hoppe HA, Lutz H, Morys P, Schnick W, Seilmeier A (2000) Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion. J Phys Chem Solids 61:2001–2006

    Article  CAS  Google Scholar 

  84. Wei XT, Wen J, Li S, Huang S, Cheng J, Chen YH, Duan CK, Yin M (2014) Red-shift of vanadate band-gap by cation substitution for application in phosphor-converted white light-emitting diodes. Appl Phys Lett 104:181904

    Google Scholar 

  85. Yadav RV, Yadav RS, Bahadur A, Rai SB (2016) Down shifting and quantum cutting from Eu3+, Yb3+ co-doped Ca12Al14O33 phosphor: a dual mode emitting material. RSC Adv 6:9049–9056

    Article  CAS  Google Scholar 

  86. Shukla R, Ningthoujam RS, Tyagi AK, Vatsa RK (2010) Luminescence properties of Dy3+ doped Gd2O3 nanoparticles prepared by glycine route: annealing effect. Int J Nanotechnol 7:843

    Article  CAS  Google Scholar 

  87. Ningthoujam RS, Kulshreshtha SK (2009) Nanocrystalline SnO2 from thermal decomposition of tin citrate crystal: luminescence and Raman studies. Mater Res Bull 44:57

    Article  CAS  Google Scholar 

  88. Ningthoujam RS, Shukla R, Vatsa RK, Duppel V, Kienle L, Tyagi AK (2009) Gd2O3:Eu3+ particles prepared by glycine-nitrate combustion: Phase, concentration, annealing, and luminescence studies. J Appl Phys 105:084304

    Google Scholar 

  89. Ningthoujam RS, Mishra R, Das D, Dey GK, Kulshreshtha SK (2008) Excess enthalpy and luminescence studies of SnO2 nanoparticles. J Nanosci Nanotech 8:4176

    Article  CAS  Google Scholar 

  90. Yadav RV, Singh SK, Rai SB (2015) Effect of the Li+ ion on the multimodal emission of a lanthanide doped phosphor. RSC Adv 5:26321–26327

    Article  CAS  Google Scholar 

  91. Zhang X, Liu Y, Zhang M, Yang J, Zhu H, Yan D, Liu CG, Xu CS, Wang XJ (2018) Efficient deep ultraviolet to near infrared quantum cutting in Pr3+/Yb3+ codoped CaGdAlO4 phosphors. J Alloys Compd 740:595–602

    Article  CAS  Google Scholar 

  92. Rakov N, Maciel GS (2011) Near-infrared quantum cutting in Ce3+, Er3+, and Yb3+ doped yttrium silicate powders prepared by combustion synthesis. J Appl Phys 110:083519

    Google Scholar 

  93. Fan B, Chlique C, Merdrignac-Conanec O, Zhang X, Fan X (2012) Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100%. J Phys Chem C 116:11652–11657

    Article  CAS  Google Scholar 

  94. Huang XY, Yu DC, Zhang QY (2009) Enhanced near-infrared quantum cutting in GdBO3:Tb3+, Yb3+ phosphors by Ce3+ cooping. J Appl Phys 106:113521

    Google Scholar 

  95. Yadav RS, Dwivedi Y, Rai SB (2012) Structural and optical characterization of nano-sized La(OH)3:Sm3+ phosphor. Spectrochim Acta Part A 96:148–153

    Article  CAS  Google Scholar 

  96. Yadav RS, Verma RK, Rai SB (2013) Intense white light emission in Tm3+/Er3+/Yb3+ co-doped Y2O3-ZnO nano-composite. J Phys D Appl Phys 46:275101

    Google Scholar 

  97. Yadav RS, Dwivedi Y, Rai SB (2014) Structural and optical properties of Eu3+, Sm3+ co-doped La(OH)3 nano-crystalline red emitting phosphor. Spectrochim Acta Part A 132:599–603

    Article  CAS  Google Scholar 

  98. Yadav RS, Dwivedi Y, Rai SB (2015) Structural and optical properties of Eu3+ doped red emitting BiVO4 nano-phosphor. Appl Mech Mater 752–753:272–276

    Article  Google Scholar 

  99. Yadav RS, Kumar D, Singh AK, Rai E, Rai SB (2018) Effect of Bi3+ ion on upconversion-based induced optical heating and temperature sensing characteristics in the Er3+/Yb3+ co-doped La2O3 nano-phosphor. RSC Adv 8:34699–34711

    Article  CAS  Google Scholar 

  100. Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Solution combustion synthesis of nanoscale materials. Chem Rev 116:14493–14586

    Article  CAS  Google Scholar 

  101. Papadas IT, Ioakeimidis A, Armatas GS, Choulis SA (2018) Low-temperature combustion pynthesis of a spinel NiCo2O4 hole transport layer for perovskite photovoltaics. Adv Sci 5:1701029

    Article  Google Scholar 

  102. Jayasimhadri M, Ratnam BV, Jang K, Lee HS, Chen B, Yi S-S, Jeong J-H, Moorthy LR (2011) Combustion synthesis and luminescent properties of nano and submicrometer-size Gd2O3:Dy3+ phosphors for white LEDs. Int J Appl Ceram Technol 8:709–717

    Article  CAS  Google Scholar 

  103. Yadav RS, Rai SB (2019) Effect of annealing and excitation wavelength on the downconversion photoluminescence of Sm3+ doped Y2O3 nano-crystalline phosphor. Opt Laser Technol 111:169–175

    Article  CAS  Google Scholar 

  104. Sikka S (2005) Handbook of sol-gel science and technology: Processing, characterization and applications. Kluwar Academic Publishers

    Google Scholar 

  105. Yang Y, Liu L, Cai S, Jiao F, Mi C, Su XY, Zhang J, Yu F, Li XD, Li Z (2014) Up-conversion luminescence and near-infrared quantum cutting in Dy3+, Yb3+ co-doped BaGd2ZnO5 nanocrystal. J Lumin 146:284–287

    Article  CAS  Google Scholar 

  106. Wei X-T, Zhao J-B, Chen Y-H, Yin M, Li Y (2010) Quantum cutting downconversion by cooperative energy transfer from Bi3+ to Yb3+ in Y2O3 phosphor. Chin Phys B 19:077804

    Google Scholar 

  107. Gao X, Li T, He J, Ye K, Song X, Wang N, Su JG, Hui CL, Zhang X (2017) Synthesis of Yb3+, Ho3+ and Tm3+ co-doped β-NaYF4 nanoparticles by sol-gel method and the multi-color upconversion luminescence properties. J Mater Sci Mater Electron 28:11644–11653

    Article  CAS  Google Scholar 

  108. Mirzaei A, Janghorban K, Hashemi B, Bonyani M, Leonardi SG, Neri G (2016) Highly stable and selective ethanol sensor based on α-Fe2O3 nanoparticles prepared by pechini sol-gel method. Ceram Int 42:6136–6144

    Article  CAS  Google Scholar 

  109. Islam S, Bidin N, Riaz S, Naseem S, Marsin FM (2016) Correlation between structural and optical properties of surfactant assisted sol-gel based mesoporous SiO2-TiO2 hybrid nanoparticles for pH sensing/optochemical sensor. Sens Actuators B Chem 225:66–73

    Article  CAS  Google Scholar 

  110. Ciciliati MA, Silva MF, Fernandes DM, de Melo MAC, Hechenleitner AAW, Pineda EAG (2015) Fe-doped ZnO nanoparticles: synthesis by a modified sol-gel method and characterization. Mater Lett 159:84–86

    Article  CAS  Google Scholar 

  111. Wang X, Liu C-S, Yu T, Yan XH (2014) Controlled synthesis, photoluminescence, and the quantum cutting mechanism of Eu3+ doped NaYbF4 nanotubes. Phys Chem Chem Phys 16:13440–13446

    Article  CAS  Google Scholar 

  112. Kadam AR, Yadav RS, Mishra GC, Dhoble SJ (2020) Effect of singly, doubly and triply ionized ions on downconversion photoluminescence in Eu3+ doped Na2Sr2Al2PO4Cl9 phosphor: a comparative study. Ceram Int 46:3264–3274

    Article  CAS  Google Scholar 

  113. Parauha YR, Yadav RS, Dhoble SJ (2020) Enhanced photoluminescence via doping of phosphate, sulphate and vanadate ions in Eu3+ doped La2(MoO4)3 downconversion phosphors for white LEDs. Opt Laser Technol 124:105974

    Google Scholar 

  114. Yadav RS, Monika, Rai SB (2020) Upconversion photoluminescence in the rare earth doped Y2O3 phosphor materials, vol. 12. CRC Press, Taylor & Francis Group, UK

    Google Scholar 

  115. Yu DC, Huang XY, Ye S, Peng MY, Zhang QY, Wondraczek L (2011) Three-photon near-infrared quantum splitting in β-NaYF4:Ho3+. Appl Phys Lett 99:161904

    Google Scholar 

  116. Dubey A, Soni AK, Kumari A, Dey R, Rai VK (2017) Enhanced green upconversion emission in NaYF4:Er3+/Yb3+/Li+ phosphors for optical thermometry. J Alloys Compds 693:194–200

    Article  CAS  Google Scholar 

  117. Li X, Zhu J, Man Z, Ao Y, Chen H (2014) Investigation on the structure and upconversion fluorescence of Yb3+/Ho3+ co-doped fluorapatite crystals for potential biomedical applications. Sci Rep 4:446

    Google Scholar 

  118. Guo L, Wang Y, Zhang J, Wang Y, Dong P (2012) Near-infrared quantum cutting in Ho3+, Yb3+-codoped BaGdF5 nanoparticles via first and second-order energy transfers. Nanoscale Res Lett 7:636

    Article  Google Scholar 

  119. Zhang L, Zhao S, Liang Z, Zhang J, Zhu W, Liu P, Sun H (2017) The colour tuning of upconversion emission from green to red in NaScF4:Yb3+/Er3+ nanocrystals by adjusting the reaction time. J Alloys Compd 699:1–6

    Article  CAS  Google Scholar 

  120. Ningthoujam RS, Gautam A, Padma N (2017) Oleylamine as reducing agent in syntheses of magic-size clusters and monodisperse quantum dots: optical and photoconductivity studies. Phys Chem Chem Phys 19:2294–2303

    Article  CAS  Google Scholar 

  121. Tong J, Wu J, Shen W, Zhang Y, Liu Y, Zhang T, Nie S, Deng Z (2019) Direct hot-injection synthesis of lead halide perovskite nanocubes in acrylic monomers for ultrastable and bright nanocrystal-polymer composite films. ACS Appl Mater Interfaces 11:9317–9325

    Article  CAS  Google Scholar 

  122. Imran M, Caligiuri V, Wang M, Goldoni L, Prato M, Krahne R, De Trizio L, Manna L (2018) Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J Am Chem Soc 140:2656–2664

    Article  CAS  Google Scholar 

  123. Creutz SE, Crites EN, De Siena MC, Gamelin DR (2018) Anion exchange in cesium lead halide perovskite nanocrystals and thin films using trimethylsilyl halide reagents. Chem Mater 30:4887–4891

    Article  CAS  Google Scholar 

  124. Zhou D, Liu D, Pan G, Chen X, Li D, Xu W, Bai X, Song H (2017) Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells. Adv Mater 29:1704149

    Article  Google Scholar 

  125. Cai T, Wang J, Li W, Hills-Kimball K, Yang H, Nagaoka Y, Yuan Y, Zia R, Chen O (2020) Mn2+/Yb3+ codoped CsPbCl3 perovskite nanocrystals with triple-wavelength emission for luminescent solar concentrators. Adv Sci 7:2001317

    Article  CAS  Google Scholar 

  126. Parobek D, Dong Y, Qiao T, Son DH (2018) Direct hot-injection synthesis of Mn-doped CsPbBr 3 nanocrystals. Chem Mater 30:2939–2944

    Article  CAS  Google Scholar 

  127. Sudhakar N, Ningthoujam RS, Gajbhiye NS, Rajeev KP (2007) Structural, magnetic and electron transport studies on nanocrystalline layered manganite La1.2Ba1.8Mn2O7 system. J Nanosci Nanotech 7:965

    Google Scholar 

  128. Mishra R, Ninghthoujam RS (2017) High temperature ceramics. In: Banerjee S, Tyagi AK (eds) 2017 in Materials under extreme conditions: recent trends and future prospects. Elsevier Inc., USA, Chapter 11, pp 377–410

    Google Scholar 

  129. Zou Z, Feng L, Cao C, Zhang J, Wang Y (2016) Near-infrared quantum cutting long persistent luminescence. Sci Rep 6:24884

    Article  CAS  Google Scholar 

  130. Dong SL, Lin HH, Yu T, Zhang QY (2014) Near-infrared quantum-cutting luminescence and energy transfer properties of Ca3(PO4)2: Tm3+,Ce3+ phosphors. J Appl Phys 116:023517

    Google Scholar 

  131. Sun J, Sun Y, Cao C, Xia Z, Du H (2013) Near-infrared luminescence and quantum cutting mechanism in CaWO4:Nd3+, Yb3+. Appl Phys B 111:367–371

    Article  Google Scholar 

  132. Yadav RV, Yadav RS, Bahadur A, Singh AK, Rai SB (2016) Enhanced quantum cutting emission through Li+ doping from Bi3+, Yb3+ co-doped gadolinium tungstate phosphor. Inorg Chem 55:10928–10935

    Article  CAS  Google Scholar 

  133. Yadav RS, Dhoble SJ, Rai SB (2018) Improved photon upconversion photoluminescence and intrinsic optical bistability from a rare earth co-doped lanthanum oxide phosphor via Bi3+ doping. New J Chem 42:7272–7282

    Article  CAS  Google Scholar 

  134. Yadav RS, Dhoble SJ, Rai SB (2018) Enhanced photoluminescence in Tm3+, Yb3+, Mg2+ tri-doped ZnWO4 phosphor: Three photon upconversion, laser induced optical heating and temperature sensing. Sens Actua B Chem 273:1425–1434

    Article  CAS  Google Scholar 

  135. Kim D, Park SW, Park SH, Choi BC, Kim JH, Jeong JH (2018) Wide range yellow emission Sr8MgLa(PO4)7: Eu2+, Mn2+, Tb3+ phosphors for near ultraviolet white LEDs. Mater Res Bull 107:280–285

    Article  CAS  Google Scholar 

  136. Li L, Chang W, He J, Yan Y, Cui M, Jiang S, Xiang G, Zhou X (2018) Molybdenum substitution simultaneously induced band structure modulation and luminescence enhancement in LiLaMg(W, Mo)O6:Eu3+ red-emitting phosphor for near ultraviolet excited white light diodes. J Alloys Compd 763:278–288

    Article  CAS  Google Scholar 

  137. Vijayakumar R, Devakumar B, Annadurai G, Guo H, Huang XY (2018) Novel high color purity and thermally stable Eu3+ ions activated Ba2Gd5B5O17 red emitting phosphor for near-UV based WLEDs. Opt Mater 84:312–317

    Article  CAS  Google Scholar 

  138. Tadge P, Yadav RS, Vishwakarma PK, Rai SB, Chen TM, Sapra S, Ray S (2020) Enhanced photovoltaic performance of Y2O3:Ho3+/Yb3+ upconversion nanophosphor based DSSC and investigation of color tunability in Ho3+/Tm3+/Yb3+ tridoped Y2O3. J Alloys Compds 821:153230

    Google Scholar 

  139. Liu X, Ye S, Qiao Y, Dong G, Zhu B, Chen D, Lakshminarayana G, Qiu J (2009) Cooperative downconversion and near-infrared luminescence of Tb3+-Yb3+ codoped lanthanum borogermanate glasses. Appl Phys B 96:51–55

    Article  CAS  Google Scholar 

  140. Zhou X, Wang Y, Zhao X, Li L, Wang ZQ, Li Q (2014) Near-infrared quantum cutting via downconversion energy transfers in Ho3+/Yb3+ codoped tellurite glass ceramics. J Am Ceram Soc 97:179–184

    Article  CAS  Google Scholar 

  141. Zhang J, Wang Y, Chen G, Huang Y (2014) Investigation on visible quantum cutting of Tb3+ in oxide hosts. J Appl Phys 115:093108

    Google Scholar 

  142. Huang XY, Zhang QY (2010) Near-infrared quantum cutting via cooperative energy transfer in Gd2O3: Bi3+, Yb3+ phosphors. J Appl Phys 107:063505

    Google Scholar 

  143. Mir WJ, Sheikh T, Arfin H, Xia Z, Nag A (2020) Lanthanide doping in metal halide perovskite nanocrystals: spectral shifting, quantum cutting and optoelectronic applications. NPG Asia Mater 12:9

    Article  CAS  Google Scholar 

  144. Teng Y, Zhou J, Liu X, Ye S, Qiu J (2010) Efficient broadband near-infrared quantum cutting for solar cells. Opt Express 18:9671–9676

    Article  CAS  Google Scholar 

  145. Duan Q, Qin F, Zhang Z, Cao W (2012) Quantum cutting mechanism in NaYF4:Tb3+, Yb3+. Opt Lett 27:521–523

    Article  Google Scholar 

  146. Shestakov MV, Tikhomirov VK, Kirilenko D, Kuznetsov AS, Chibotaru LF, Baranov AN, Van Tendeloo G, Moshchalkov VV (2011) Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host. Opt Express 19:15955–15964

    Article  CAS  Google Scholar 

  147. Terra IAA, Borrero-Gonzalez LJ, Carvalho JM, Terrile MC, Felinto MCFC, Brito HF, Nunes LAO (2013) Spectroscopic properties and quantum cutting in Tb3+-Yb3+ co-doped ZrO2 nanocrystals. J Appl Phys 113:073105

    Google Scholar 

  148. Yadav RS, Rai SB (2018) Concentration and wavelength dependent frequency downshifting photoluminescence from a Tb3+ doped yttria nano-phosphor: a photochromic phosphor. J Phys Chem Solids 114:179–186

    Article  CAS  Google Scholar 

  149. Xie L, Wang Y, Zhang H (2009) Near-infrared quantum cutting in YPO4:Yb3+, Tm3+ via cooperative energy transfer. Appl Phys Lett 94:061905

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ram Sagar Yadav or Raghumani S. Ningthoujam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, R.S., Ningthoujam, R.S. (2021). Synthesis and Characterization of Quantum Cutting Phosphor Materials. In: Tyagi, A.K., Ningthoujam, R.S. (eds) Handbook on Synthesis Strategies for Advanced Materials. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-1892-5_7

Download citation

Publish with us

Policies and ethics