Skip to main content

Synthesis of Noble Gas Compounds: Defying the Common Perception

  • Chapter
  • First Online:
Handbook on Synthesis Strategies for Advanced Materials

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

Although they were not assigned a place in original Mendeleev periodic table, noble gases found a special place in popular science history. Their discovery, prediction about their reactivity, and preparation of first compound of noble gases are a display of utter determination, innovation, scientific temperament, and conviction. Since discovery, noble gases have been considered as inert or rare gases that are unable to react with other elements. This notion was shattered in 1962 when Bartlett prepared first noble gas compound. Subsequently, a flurry of synthetic and structural work ensued in hundreds of noble gas compounds. This chapter will take the readers on a journey of how the noble gases were discovered from the 0.1% discrepancy in assigning the density of nitrogen. Moving further, the chapter will shine light on how a 60 years long dogma related to the inertness of noble gases was overthrown in one master stroke. In addition to this, the chapter will also provide the discussion on the synthesis of compounds of noble gases and how the compounds which are almost impossible to prepare under ambient conditions become reality under high pressure. Furthermore, an enigma related to missing xenon phenomenon and proposed models to explain this paradox has also been included in this chapter. In the last, the chapter would like to draw the attention of the readers toward a question; was coaxing reactivity from these intractable elements not remarkable?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pyykko P (2000) Noblesse oblige. Science 290:64–65

    Article  CAS  Google Scholar 

  2. Hallford B (2019) To get noble gases to forge bonds, chemists go to extremes. 97:22. https://cen.acs.org

  3. Schrobilgen GJ, Brock DS, Mercier HPA Noble gas compounds. https://doi.org/10.1002/0471238961.0315131619030818.a01.pub3

  4. Grandinetti F (2018) Noble gas chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 9469 Weinheim, Germany, Print ISBN: 978-3-527-34180-1

    Google Scholar 

  5. Cavendish H (1785) Experiments on air. Philos Trans R Soc Lond 75:372–384

    Google Scholar 

  6. Janssen P (1868) Discovery of helium. Compt Rend 67:839

    Google Scholar 

  7. Lockyer JN (1896) The story of helium. Nature 53:319–22

    Article  Google Scholar 

  8. Rayleigh (1894) Proc R Soc Lond 55:40–344

    Google Scholar 

  9. Ramsay W (1915) Macmillan and Co., London

    Google Scholar 

  10. Rayleigh L, Ramsay W (1895) Argon, a new constituent of the atmosphere philosophical transactions. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 186:187–241

    Google Scholar 

  11. Hillebrand W (1891) Am J Sci 42:390

    Article  Google Scholar 

  12. Ramsay W, Collie JN, Travers M (1895) On the behaviour of argon and helium when submitted to the electric discharge. J Chem Soc Trans 67:684–701

    Google Scholar 

  13. Ramsay W, Travers MW (1900) Argon and its companions. Proc R Soc Lond 67:329–333

    CAS  Google Scholar 

  14. Partington JR (1957) Discovery of radon. Nature 179:912

    Google Scholar 

  15. Christe KO (2008) Neil Bartlett (1932–2008). Nature 455:182

    Article  CAS  Google Scholar 

  16. Neil Bartlett and the Reactive Noble Gases commemorative booklet produced by the National Historic Chemical Landmarks program of the American Chemical Society in 2006

    Google Scholar 

  17. Yost DM, Kaye AL (1933) An attempt to prepare a chloride or fluoride of xenon. J Am Chem Soc 55:3890–3892

    Google Scholar 

  18. Antropoff A (1924) Die Wertigkeit der Edelgase und ihre Stellung im periodischen System. Angew Chem 37:217 and 695

    Google Scholar 

  19. Ruff O, Menzel W, Anorg Z (1933) Neue Sauerstofffluoride: O2F2 and OF. Allg Chem 213:206

    Google Scholar 

  20. Bartlett N (1962) Xenon hexafluoroplatinate(V) Xe+(PtF6)−. Proc Chem Soc 218

    Google Scholar 

  21. Christe KO (2013) Bartlett’s discovery of noble gas fluorides, a milestone in chemical history. Chem Commun 49:4588–4590

    Google Scholar 

  22. Hargittai I (2009) Neil Bartlett and the first noble-gas compound. Struct Chem 20:953–959

    Google Scholar 

  23. Claasen HH, Selig H, Malm JG (1962) Xenon tetrafluoride. J Am Chem Soc 84:3593

    Google Scholar 

  24. Hoppe R, Dähne W, Mattauch H, Rödder KM (1962) Fluorination of xenon. Angew Chem Int Ed 1:599

    Google Scholar 

  25. Smith DF (1963) Xenon trioxide. J Am Chem Soc 85:816–817

    Google Scholar 

  26. Selig H, Classen HW, Chernick CL, Malm JG, Huston JL (1964) Xenon trioxide: preparation and some properties. Science 143:1322–1323

    Google Scholar 

  27. Pitzer KS (1963) Bonding in xenon fluorides and halogen fluorides. Science 139:414

    Google Scholar 

  28. Bartlett NR, Rao PR (1963) Xenon hydroxide: an experimental hazard. Science 139:506

    Google Scholar 

  29. Templeton DH, Zalkin A, Forrester JD, Williamson SM (1963) Crystal and molecular structure of xenon trioxide. J Am Chem Soc 85:817

    Google Scholar 

  30. Goettel JT, Schrobilgen GJ (2016) Solid-State Structures of XeO3. 55:12975–12981

    Google Scholar 

  31. Marczenko KM, Mercier HPA, Schrobilgen GJ (2018) A stable crown ether complex with a noble-gas compound. Angew Chem 57:12448–12452

    Google Scholar 

  32. Szarek P, Grochala W (2015) Noble gas monoxides stabilized in a dipolar cavity: a theoretical study. J Phys Chem A 119:2483–2489

    Google Scholar 

  33. Brock DS, Schrobilgen GJ (2011) Synthesis of the missing oxide of xenon, XeO2, and its implications for earth’s missing xenon. J Am Chem Soc 133:6265–6269

    Google Scholar 

  34. Zhu Q, Zung DY, Oganov AR, Glass CW, Gatti C, Lyakhov AO (2013) Stability of xenon oxides at high pressures. Nat Chem 5:61–65

    Google Scholar 

  35. Rupp HH, Seppelt K (1974) Struktur von Xenonhexafluorid in Lösung: Xe4F24. Angew Chem Int Ed Engl 13:612

    Google Scholar 

  36. Burbank RD, Jones GR (1971) Xenon hexafluoride: structural crystallography of tetrameric phases. Science 171:485

    Google Scholar 

  37. Howard WF Jr, Andrews L (1974) Synthesis of noble-gas dihalides by laser photolysis of matrix-isolated halogens. J Am Chem Soc 96:7864

    Google Scholar 

  38. Jortner J, Wilson EG, Rice SA (1963) The heats of sublimation of XeF2 and XeF4 and a conjecture on bonding in the solids. J Am Chem Soc 85:814–815

    Google Scholar 

  39. Tavcar G, Tramsek M (2015) J Fluorine Chem 174:14–21

    Google Scholar 

  40. Hagiwara R, Hollander F, Maines C, Bartlett N (1991) The crystal structure of [Ag (XeF2)2]AsF6 formed in the oxidation of Xe by AgFAsF6. J Eur Solid State Inorg Chem 28:855–866

    Google Scholar 

  41. Brau CA, Ewing JJ (1975) Emission spectra of XeBr, XeCl, XeF, and KrF. J Chem Phys 63:4640

    Google Scholar 

  42. Ault BS, Andrews L (1976) Absorption and emission spectra of matrix‐isolated XeF, KrF, XeCl, and XeBr. J Chem Phys 65:4192

    Google Scholar 

  43. Huston JL (1971) Xenon dioxide tetrafluoride. J Am Chem Soc 93:5255

    Google Scholar 

  44. Malm JG, Appelman EH (1969) At Energy Rev 7:3

    Google Scholar 

  45. Gunn SR (1967) Heat of formation of krypton difluoride. J Phys Chem 71:2934

    Google Scholar 

  46. Johnson GK, Malm JG, Hubbard WN (1972) The enthalpies of formation of XeF6(c), XeF4(c), XeF2(c), and PF3(g). J Chem Thermodyn 4:879

    Google Scholar 

  47. Lehmann JF, Mercier HPA, Schrobilgen GJ (2002) The chemistry of krypton. Coord Chem Rev 233–234:1–39

    Google Scholar 

  48. Zhu L, Liu H, Pickard CJ, Zou G, Ma Y (2014) Reactions of xenon with iron and nickel are predicted in the Earth’s inner core. Nat Chem 6:644–648

    Google Scholar 

  49. Wacker JF, Andres E (1984) Where is the Earth’s missing xenon. SAO/NASA Astrophysics Data System (ADS) 48:2373–2380

    Google Scholar 

  50. Sanloup C, Bonev SA, Hochalf M, Casley HEM (2013) Reactivity of xenon with ice at planetary conditions. Phy Rev Lett 110:265501

    Google Scholar 

  51. Sanloup C, Schmidt BC, Perez EMC, Jambon A, Gregoryanz E (2005) Retention of xenon in quartz and Earth’s missing xenon. Science 310:1174

    Google Scholar 

  52. Probert MIJ (2010) Retention of xenon in quartz and Earth’s missing xenon. J Phys 22:025501

    Google Scholar 

  53. Cynn H, Yoo CS, Baer B, Herbei VL, McMahan AK, Nicol M, Carlson S (2001) Martensitic fcc-to-hcp transformation observed in xenon at high pressure. Phys Rev Lett 86:4552

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adish Tyagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tyagi, A. (2021). Synthesis of Noble Gas Compounds: Defying the Common Perception. In: Tyagi, A.K., Ningthoujam, R.S. (eds) Handbook on Synthesis Strategies for Advanced Materials. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-1892-5_3

Download citation

Publish with us

Policies and ethics