Skip to main content

High-Performance Polymer-Matrix Composites: Novel Routes of Synthesis and Interface-Structure-Property Correlations

  • Chapter
  • First Online:
Handbook on Synthesis Strategies for Advanced Materials

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

No single material or a class of material meets the diverse set of properties required for different applications. Inherent advantages and disadvantages of metals, ceramics, or polymers have made it necessary to develop combinatorial approaches, wherein their functional advantages are maximized and drawbacks are abridged. Composites are the materials comprising two or more constituent materials with significantly different physical, mechanical, electrical, or thermal attributes. Composites offer material characteristics that are different from the individual components and can be engineered to entail synergistic advantages such as high strength, corrosion resistance, electrical or thermal conductivity, and low cost. Notably, in composites, the individual components may remain separate and distinct within the finished structure. The composite material is generally defined by the matrix such as metal-matrix composite, ceramic-matrix composites, and polymer-matrix composites, or by the type and morphological arrangement of the filler such as particle reinforced, fiber reinforced, unidirectional, random, laminates, or honeycombs. Fabrication of composite materials is accomplished by a wide variety of techniques such as melt compounding, in situ polymerization, tufting, tailored fiber placement and filament winding. Depending on the matrix and the filler, different synthetic strategies are adopted. Further with the advent of nano-sized fillers, new class of composites has emerged which have significant important advantages over the conventional composites. This chapter provides details on the synthesis strategies of different polymer-matrix composite materials. A detailed account of the strategies to tailor interfacial adhesion, dispersion, filler asymmetry, filler orientation, and high loading is made, and specific details on the synthesis of nanocomposites and the morphology-interface-property correlation are presented. Recent advances in the theoretical frameworks and the specific applications of the composites are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3D:

Three dimensional

AlN:

Aluminum nitride

BS:

Barium sulfate

BT:

Barium titanate

CaCO3:

Calcium carbonate

CF:

Carbon fiber

CNF:

Conducting nano-fiber

CNT:

Carbon nanotube

CPC:

Conducting polymer composites

DVB:

Divinylbenzene

EB:

Electron beam

EPDM:

Ethylene propylene diene monomer

EPR:

Electron paramagnetic resonance

Epoxy-Br:

Brominated epoxy

ER:

Epoxy resin

EVA:

Ethylene vinyl acetate

FCE:

Fluorocarbon elastomer

FRPs:

Fiber-reinforced plastics

GO:

Graphene oxide

MA:

Maleic anhydride

MCFs:

Microcrystalline cellulose fibers

MMT:

Montmorillonite

MWCNT:

Multi-walled carbon nanotube

NCB:

Nano carbon black

NR:

Natural rubber

PAN-g-PDMS:

Polyacrylonitrile-graft-poly(dimethyl siloxane)

PB:

Polybutadiene

PBA:

Poly(butyl acrylate)

PC:

Polymer composites

PDMS:

Poly(dimethyl siloxane)

PP:

Polypropylene

PTFE:

Poly(tetra fluoro ethylene)

PVDF:

Polyvinylidene fluoride

PVP:

Poly(vinyl pyrrolidone)

SBR:

Styrene-butadiene rubber

SEM:

Scanning electron microscopy

SWCNT:

Single-walled carbon nanotube

T g :

Glass transition temperature

TPC:

Thermoplastic composites

TSCs:

Thermoset composites

TiO2:

Titanium dioxide

TMPTA:

Trimethylolpropane triacrylate

References

  1. DiBenedetto AT (2001) Tailoring of interfaces in glass fiber reinforced polymer composites: a review. Mater Sci Eng, A 302(1):74–82

    Article  Google Scholar 

  2. Karger-Kocsis J, Mahmood H, Pegoretti A (2015) Recent advances in fiber/matrix interphase engineering for polymer composites. Prog Mater Sci 73:1–43

    Article  CAS  Google Scholar 

  3. Kumre A, Rana RS, Purohit R (2017) A review on mechanical property of sisal glass fiber reinforced polymer composites. Mater Today: Proc 4((2, Part A)):3466–3476

    Google Scholar 

  4. Sharpe LH (1998) Some fundamental issues in adhesion: a conceptual view. J Adhes 67(1–4):277–289

    Article  CAS  Google Scholar 

  5. Park S-J, Seo M-K (2011) Element and processing (chapter 6). In: Park S-J, Seo M-K (eds) Interface science and technology. Elsevier, pp 431–499

    Google Scholar 

  6. Rothon R, DeArmitt C (2017) Fillers (including fiber reinforcements) (chapter 8). In: Gilbert M (ed) Brydson’s plastics materials, 8th edn. Butterworth-Heinemann, pp 169–204

    Google Scholar 

  7. Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng, C 23(6):763–772

    Article  Google Scholar 

  8. Yung KC, Zhu BL, Yue TM, Xie CS (2009) Effect of the filler size and content on the thermomechanical properties of particulate aluminum nitride filled epoxy composites. J Appl Polym Sci 116(1):225–236

    Article  Google Scholar 

  9. Singh RP, Zhang M, Chan D (2002) Toughening of a brittle thermosetting polymer: effects of reinforcement particle size and volume fraction. J Mater Sci 37(4):781–788

    Article  CAS  Google Scholar 

  10. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos B Eng 39(6):933–961

    Article  Google Scholar 

  11. Dubey KA, Bhardwaj YK, Chaudhari CV, Sarma KSS, Goel NK, Sabharwal S (2011) Electron beam processing of LDPE/EVA/PCR ternary blends: radiation sensitivity evaluation and physico-mechanical characterization. J Polym Res 18(1):95–103

    Article  CAS  Google Scholar 

  12. Stöckelhuber KW, Svistkov AS, Pelevin AG, Heinrich G (2011) Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules 44(11):4366–4381

    Article  Google Scholar 

  13. Sidorina AI, Gunyaeva AG (2017) Modification of surface of reinforcing carbon fillers for polymeric composite materials by plasma treatment (review). Fibre Chem 49(1):24–27

    Article  CAS  Google Scholar 

  14. Liu S, Xue S, Xiu S, Shen B, Zhai J (2016) Surface-modified Ba(Zr0.3Ti0.7)O3 nanofibers by polyvinylpyrrolidone filler for poly(vinylidene fluoride) composites with enhanced dielectric constant and energy storage density. Sci Rep 6:26198

    Article  CAS  Google Scholar 

  15. Nowicki A, Przybytniak G, Kornacka E, Mirkowski K, Zimek Z (2007) Radiation-induced modification of montmorillonite used as a filler in PP composite. Radiat Phys Chem 76(5):893–900

    Article  CAS  Google Scholar 

  16. Khan MS, Franke R, Gohs U, Lehmann D, Heinrich G (2009) Friction and wear behaviour of electron beam modified PTFE filled EPDM compounds. Wear 266(1):175–183

    Article  CAS  Google Scholar 

  17. Dondi D, Buttafava A, Palamini C, Pepori F, Lostritto A, Giannini L, Nahmias M, Conzatti L, Faucitano A (2011) γ-Radiation induced functional modification of silica and radiation vulcanization of SBR-silica composites. Macromol Symp 301(1):90–95

    Article  CAS  Google Scholar 

  18. Daud NA, Chieng BW, Ibrahim NA, Talib ZA, Muhamad EN, Abidin ZZ (2017) Functionalizing graphene oxide with alkylamine by gamma-ray irradiation method. Nanomaterials 7(6):135

    Article  Google Scholar 

  19. Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites, 2nd edn. Taylor & Francis

    Google Scholar 

  20. Peng W, Riedl B (1995) Thermosetting resins. J Chem Educ 72(7):587

    Article  CAS  Google Scholar 

  21. Pazat A, Barrès C, Bruno F, Janin C, Beyou E (2018) Preparation and properties of elastomer composites containing “graphene”-based fillers: a review. Polym Rev 58(3):403–443

    Article  CAS  Google Scholar 

  22. Sýkora R, Babayan V, Ušáková M, Kruželák J, Hudec I (2015) Rubber composite materials with the effects of electromagnetic shielding. Polym Compos 37(10):2933–2939

    Article  Google Scholar 

  23. Linhua P, Guilin W (2015) The research of scrapped automobiles recycling and disassembling industry development based on auto industry chain. In: MATEC web of conferences, vol 26

    Google Scholar 

  24. Cech V, Palesch E, Lukes J (2013) The glass fiber–polymer matrix interface/interphase characterized by nanoscale imaging techniques. Compos Sci Technol 83:22–26

    Article  CAS  Google Scholar 

  25. Rodriguez-Uicab O, May-Pat A, Aviles F, Toro P, Yazdani-Pedram M (2013) Influence of processing method on the mechanical and electrical properties of MWCNT/PET composites. J Mater 2013:10

    Google Scholar 

  26. Li X, Coleman MR (2014) Impact of processing method and surface functionality on carbon nanofiber dispersion in polyimide matrix and resulting mechanical properties. Polym Compos 35(8):1473–1485

    Article  CAS  Google Scholar 

  27. Lin-Gibson S, Sung L, Forster AM, Hu H, Cheng Y, Lin NJ (2009) Effects of filler type and content on mechanical properties of photopolymerizable composites measured across two-dimensional combinatorial arrays. Acta Biomater 5(6):2084–2094

    Article  CAS  Google Scholar 

  28. Kim K-H, Ong JL, Okuno O (2002) The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent 87(6):642–649

    Article  CAS  Google Scholar 

  29. Kim YH, Kim DH, Kim JM, Kim SH, Kim WN, Lee HS (2009) Effects of filler characteristics and processing conditions on the electrical, morphological and rheological properties of PE and PP with conductive filler composites. Macromol Res 17(2):110–115

    Article  CAS  Google Scholar 

  30. Jesson DA, Watts JF (2012) The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification. Polym Rev 52(3):321–354

    Article  CAS  Google Scholar 

  31. Gan XY (2009) Effect of interface structure on mechanical properties of advanced composite materials. Int J Mol Sci 10(12)

    Google Scholar 

  32. Bayley GM, Hedenqvist M, Mallon PE (2011) Large strain and toughness enhancement of poly(dimethyl siloxane) composite films filled with electrospun polyacrylonitrile-graft-poly(dimethyl siloxane) fibres and multi-walled carbon nanotubes. Polymer 52(18):4061–4072

    Article  CAS  Google Scholar 

  33. Luo QY, Lu SR, Song LF, Li YQ (2016) Fabrication of sisal fibers/epoxy composites with liquid crystals polymer grafted on sisal fibers. In: IOP conference series: materials science and engineering, vol 137, issue 1, pp 012052

    Google Scholar 

  34. Ma CG, Rong MZ, Zhang MQ, Friedrich K (2005) Irradiation-induced surface graft polymerization onto calcium carbonate nanoparticles and its toughening effects on polypropylene composites. Polym Eng Sci 45(4):529–538

    Article  CAS  Google Scholar 

  35. Madani M (2009) Mechanical properties of polypropylene filled with electron beam modified surface-treated titanium dioxide nanoparticles. J Reinf Plast Compos 29(13):1999–2014

    Article  Google Scholar 

  36. Wu Q, Li M, Gu Y, Wang S, Wang X, Zhang Z (2015) Reaction of carbon fiber sizing and its influence on the interphase region of composites. J Appl Polym Sci 132(18)

    Google Scholar 

  37. Guo X, Lu Y, Sun Y, Wang J, Li H, Yang C (2018) Effect of sizing on interfacial adhesion property of glass fiber-reinforced polyurethane composites. J Reinf Plast Compos 37(5):321–330

    Article  CAS  Google Scholar 

  38. Pracella M, Chionna D, Anguillesi I, Kulinski Z, Piorkowska E (2006) Functionalization, compatibilization and properties of polypropylene composites with Hemp fibres. Compos Sci Technol 66(13):2218–2230

    Article  CAS  Google Scholar 

  39. Yi S, Xu S, Fang Y, Wang H, Wang Q (2017) Effects of matrix modification on the mechanical properties of wood-polypropylene composites. Polymers 9(12):712

    Article  Google Scholar 

  40. Lai M, Yu S, Sun R (2014) Ceramic/polymer composites with enhanced permittivity and low dielectric loss through grafting modification of polymer matrix by polyethylene glycol. Mater Lett 122:45–48

    Article  CAS  Google Scholar 

  41. Gutowski WS (2003) Interface/Interphase engineering of polymers for adhesion enhancement: part I. Review of micromechanical aspects of polymer interface reinforcement through surface grafted molecular brushes. J Adhes 79(5):445–482

    Article  CAS  Google Scholar 

  42. Tapan BA, Piyush PG, Vijaykumar C (2018) Primary manufacturing processes for fiber reinforced composites: history, development & future research trends. In: IOP conference series: materials science and engineering, vol 330, issue 1, pp 012107

    Google Scholar 

  43. Calvert O, Duggal D, Patra P, Agrawal A, Sawhney A (2008) Conducting polymer and conducting composite strain sensors on textiles. Mol Cryst Liq Cryst Sci 484(1):291/[657]-302/[668]

    Article  Google Scholar 

  44. Sarath CC, Shanks RA, Thomas S (2014) Polymer Blends (chapter 1). In: Thomas S, Shanks R, Chandrasekharakurup S (eds) Nanostructured polymer blends. William Andrew Publishing, Oxford, pp 1–14

    Google Scholar 

  45. Mondal RK, Dubey KA, Bhardwaj YK, Panicker L, Varshney L (2016) Acronitrile butadiene styrene/polycaprolactam/nano carbon black composites: selective percolation, glass transition and temperature dependence of electrical conductivity. Polym Compos 37(2):481–487

    Article  CAS  Google Scholar 

  46. Dubey KA, Mondal RK, Grover V, Bhardwaj YK, Tyagi AK (2015) Development of a novel strain sensor based on fluorocarbon–elastomeric nanocomposites: effect of network density on the electromechanical properties. Sens Actuators, A 221:33–40

    Article  CAS  Google Scholar 

  47. Mondal RK, Kumar J, Dubey KA, Bhardwaj YK, Melo JS, Varshney L (2018) Network density tailored standalone-flexible fluorocarbon elastomer/nanocarbon black chemiresistors for 2-propanone field detection. Sens Actuators, B Chem 265:193–203

    Article  Google Scholar 

  48. Jamdar V, Kathalewar M, Jagtap RN, Dubey KA, Sabnis A (2015) Effect of -irradiation on glycolysis of PET waste and preparation of ecofriendly coatings using bio-based and recycled materials. Polym Eng Sci 55(11):2653–2660

    Article  CAS  Google Scholar 

  49. Mondal RK, Dubey KA, Bhardwaj YK, Varshney L (2016) Novel hybrid nanocarbons/poly(dimethylsiloxane) composites based chemiresistors for real time detection of hazardous aromatic hydrocarbons. Carbon 100:42–51

    Article  CAS  Google Scholar 

  50. Majji S, Dubey KA, Mondal RK, Bhardwaj YK, Acharya S (2014) Development of electron beam cross-linked PDMS/PTFEM composites with low coefficient of friction and high elastic modulus. Polym-Plast Technol Eng 53(5):435–441

    Article  CAS  Google Scholar 

  51. Dubey KA, Majji S, Sinha SK, Bhardwaj YK, Acharya S, Chaudhari CV, Varshney L (2013) Synergetic effects of radiolytically degraded PTFE microparticles and organoclay in PTFE-reinforced ethylene vinyl acetate composites. Mater Chem Phys 143(1):149–154

    Article  CAS  Google Scholar 

  52. Suman SK, Kadam RM, Mondal RK, Murali S, Dubey KA, Bhardwaj YK, Natarajan V (2017) Melt-compounded composites of ethylene vinyl acetate with magnesium sulfate as flexible EPR dosimeters: mechanical properties, manufacturing process feasibility and dosimetric characteristics. Appl Radiat Isot 121:82–86

    Article  CAS  Google Scholar 

  53. Suman SK, Dubey KA, Mishra BB, Bhardwaj YK, Mondal RK, Seshadri M, Natarajan V, Varshney L (2015) Synthesis of a flexible poly(chloroprene)/methyl red film dosimeter using an environment-benign shear compounding method. Appl Radiat Isot 98:60–65

    Article  CAS  Google Scholar 

  54. Suman SK, Mondal RK, Kumar J, Dubey KA, Kadam RM, Melo JS, Bhardwaj YK, Varshney L (2017) Development of highly radiopaque flexible polymer composites for X-ray imaging applications and copolymer architecture-morphology-property correlations. Eur Polymer J 95:41–55

    Article  CAS  Google Scholar 

  55. Dubey KA, Chaudhari CV, Suman SK, Raje N, Mondal RK, Grover V, Murali S, Bhardwaj YK, Varshney L (2016) Synthesis of flexible polymeric shielding materials for soft gamma rays: physicomechanical and attenuation characteristics of radiation crosslinked polydimethylsiloxane/Bi2O3 composites. Polym Compos 37(3):756–762

    Article  CAS  Google Scholar 

  56. Zhang H, Bilotti E, Peijs T (2015) The use of carbon nanotubes for damage sensing and structural health monitoring in laminated composites: a review. Nanocomposites 1(4):167–184

    Article  CAS  Google Scholar 

  57. Rauf A, Hand RJ, Hayes SA (2012) Optical self-sensing of impact damage in composites using E-glass cloth. Smart Mater Struct 21(4):045021

    Article  Google Scholar 

  58. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794

    Article  CAS  Google Scholar 

  59. Mphahlele K, Ray SS, Kolesnikov A (2017) Self-healing polymeric composite material design, failure analysis and future outlook: a review. Polymers 9(10):535

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Dr. P. K. Pujari, Director, Radiochemistry and Isotope Group, for his constant encouragement and a keen interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Dubey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubey, K.A., Bhardwaj, Y.K. (2021). High-Performance Polymer-Matrix Composites: Novel Routes of Synthesis and Interface-Structure-Property Correlations. In: Tyagi, A.K., Ningthoujam, R.S. (eds) Handbook on Synthesis Strategies for Advanced Materials. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-1892-5_1

Download citation

Publish with us

Policies and ethics