Skip to main content

Synthesis and Development of Platinum-Based Anticancer Drugs

  • Chapter
  • First Online:
Handbook on Synthesis Strategies for Advanced Materials

Abstract

This article describes the prime role of anticancer drugs based on platinum in clinical treatment, their limitations and side effects. The efforts to investigate the molecular mechanism of their anticancer action proved by crystal structural and NMR spectrometric analyses and other techniques have been summarized in order to give clear picture of developments in establishing the mechanism. It has given clear evidences of platinum(II) interactions with DNA forming the adducts leading to death of cancer cells. Along with these interactions, the harmful as well as beneficial interactions of platinum with various sulphur containing biomolecules and sulphur containing molecules have been briefly described; which has given a new direction to design the novel platinum-based drugs and the use of sulphur containing molecule as chemoprotective actions. After the understanding the reason, i.e. high reactivity of platinum(II) leading to such undesired interactions; the new strategy of kinetically inert Pt(IV) prodrug concept was developed to overcome such limitation. Such Pt(IV) compounds having additional features of axial groups which confer the favourable biocompatible properties have been described. After the understanding of developmental stages, the synthesis of representative examples various types of platinum(II) as well as platinum(IV) compounds have been described. Later the evaluation methods for anticancer properties have mentioned. The drug delivery systems in order to overcome the side effects have been mentioned. It is anticipated that this account of platinum-based anticancer drug development, will help in designing novel compounds which will overcome limitations of existing drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. WHO report on cancer: setting priorities, investing wisely and providing care for all. Geneva: world Health Organization (2020) Licence: CC BY-NC-SA 3.0 IGO; ISBN 978-92-4-000129-9 (electronic version)

    Google Scholar 

  2. (a) Esfahani K, Roudaia L, Buhlaiga N, Rincon SVD, Papneja N, Miller WH, Jr (2020) A review of cancer immunotherapy: from the past, to the present, to the future. Curr Oncol (Suppl 2):S87; (b) Oiseth SJ, Aziz MS (2017) Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat 3:250; (c) dos Santos AF, de Almeida DRQ, Terra LF, Baptista MS, Labriola L (2019) Photodynamic therapy in cancer treatment - an update review. J Cancer Metastasis Treat 5:25; (d) Nedunchezhian K, Aswath N, Thiruppathy M, Thirugnanamurthy S (2016) Boron Neutron Capture Therapy - A Literature Review. J Clin Diagn Res 10(12):ZE01; (e) Miyatake S, Wanibuchi M, Hu N, Ono K (2020) Boron neutron capture therapy for malignant brain tumors. J Neurooncol 149:1; (f) Soares PIP, Ferreira IMM, Igreja RAGBN, Novo CMM, Borges JPMR (2012) Application of hyperthermia for cancer treatment: recent patents review. Recent Pat Anti-Cancer Drug Discovery 7(1):64

    Google Scholar 

  3. (a) Barry NPE, Sadler PJ (2014) 100 years of metal coordination chemistry: from Alfred Werner to anticancer metallodrugs. Pure Appl Chem 86(12):1897; (b) Alderden RA, Hall MD, Hambley TW (2006) The discovery and development of cisplatin. J Chem Educ 83(5):728; (c) Komeda S, Casini A (2012) Next-generation anticancer metallodrugs. Curr Top Med Chem 12(3):219 (p 1–18); (d) Alessio E, Guo Z (2017) Metal anticancer complexes – activity, mechanism of action, future perspectives. Eur J Inorg Chem 2017(12):1539

    Google Scholar 

  4. Ghosh S (2019) Cisplatin: the first metal based anticancer drug. Bioorg Chem 88:102925

    Google Scholar 

  5. Rosenberg BH, Cavalieri LF (1965) Template deoxyribonucleic acid and the control of replication. Nature 206(988):999; (b) Rosenberg B, VanCamp L, Trosko JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385

    Google Scholar 

  6. Aldossary SA (2019) Review on pharmacology of cisplatin: clinical use, toxicity and mechanism of resistance of cisplatin. Biomed Pharmacol J 12(1):7

    Google Scholar 

  7. Sastry J, Kellie SJ (2005) Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatr Hematol Oncol 22(5):441

    Google Scholar 

  8. (a) Amable L (2016) Cisplatin resistance and opportunities for precision medicine. Pharmacol Res 106:27; (b) Kasherman Y, Sturup S, Gibson D (2009) Is glutathione the major cellular target of cisplatin? A study of the interactions of cisplatin with cancer cell extracts. J Med Chem 52(14):4319

    Google Scholar 

  9. (a) Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573; (b) Mcwhinney SR, Goldberg RM, Mcleod HL (2009) Platinum neurotoxicity pharmacogenetics. Mol Cancer Ther 8(1):10; (c) Wheate NJ, Walker S, Craig GE, Oun R (2010) The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans 39:8113

    Google Scholar 

  10. Rehm T, Rothemund M, Dietel T, Kempe R, Schobert R (2019) Synthesis, structures and cytotoxic effects in vitro of cis- and trans-[PtIVCl4(NHC)2] complexes and their PtII precursors. Dalton Trans 48:16358

    Google Scholar 

  11. Hall MD, Dolman RC, Hambley TW (2004) Platinum(IV) Anticancer complexes. Met Ions Biol Syst 41:297

    Google Scholar 

  12. Metzler-Nolte N, Guo Z (2016) Themed issue on Metallodrugs: activation, targeting, and delivery. Dalton Trans 45:12965

    Google Scholar 

  13. (a) Johnstone TC, Suntharalingam K, Lippard SJ (2016) The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem Rev 116(5):3436; (b) Wilson JJ, Lippard SJ (2013) Synthetic methods for the preparation of platinum anticancer complexes. Chem Rev 114(8):4470; (c) Kostova I (2006) Platinum complexes as anticancer agents. Recent Pat Anticancer Drug Discov 1(1):1(1–22)

    Google Scholar 

  14. (a) O’Halloran TV, Lippard SJ (1985) The chemistry of platinum in the +3 oxidation state. Isr J Chem 25(2):130; (b) Balch AL (1984) Odd oxidation states of palladium and platinum. Comments Inorg Chem 3(2–3):51

    Google Scholar 

  15. (a) Huheey JE, Keiter EA, Keiter RL (1997) Inorg Chem: Principles Struct React; (b) Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn; ISBN: 978-0-471-19957-1

    Google Scholar 

  16. (a) Johnstone TC, Park GY, Lippard SJ (2014) Understanding and improving platinum anticancer drugs – phenanthriplatin. Anticancer Res 34(1):471; (b) Hall MD, Mellor HR, Callaghan R, Hambley TW (2007) Basis for design and development of platinum(IV) anticancer complexes. J Med Chem 50(15):3403

    Google Scholar 

  17. Lippard SJ (1991) Platinum DNA chemistry. In: Howell SB (ed) Platinum and other metal coordination compounds in cancer chemotherapy. Springer, Boston, MA

    Google Scholar 

  18. Jennerwein M, Andrews PA (1995) Effect of intracellular chloride on the cellular pharmacodynamics of cis-diamminedichloroplatinum (II). Drug Metab Dispos 23(2):178

    Google Scholar 

  19. (a) Wang D, Lippard S (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307; (b) Davies MS, Berners-Price SJ, Hambley TW (1998) Rates of platination of AG and GA containing double-stranded oligonucleotides: insights into why cisplatin binds to GG and AG but not GA sequences in DNA. J Am Chem Soc 120(44):11380; (c) Boreham CJ, Broomhead JA, Fairlie DP (1981) A 195Pt and 15N N.M.R. study of the anticancer drug, cis-diammine-dichloroplatinum(II), and its hydrolysis and oligomerization products. Aust J Chem 34(3):659; (d) Legendre F, Bas V, Kozelka J, Chottard JC (2000) A complete kinetic study of GG versus AG platination suggests that the doubly aquated derivatives of cisplatin are the actual DNA binding species. Chem Eur J 6(11):2002; (e) Hambley TW (2001) Platinum binding to DNA: structural controls and consequences. J Chem Soc Dalton Trans 2711; (f) Kozelka J, Legendre F, Reeder F, Chottard J-C (1999) Kinetic aspects of interactions between DNA and platinum complexes. Coord Chem Rev 190–192:61; (g) Davies MS, Berners-Price SJ, Hambley TW (2000) Slowing of cisplatin aquation in the presence of DNA but not in the presence of phosphate: improved understanding of sequence selectivity and the roles of monoaquated and diaquated species in the binding of cisplatin to DNA. Inorg Chem 39(25):5603; (h) Miller SE, House DA (1989) The hydrolysis products of cis-dichlorodiammineplatinum(II) 2. The kinetics of formation and anation of the cis-diamminedi(aqua)platinum(II) cation. Inorg Chim Acta 166(2):189; (i) Pizarro AM, Sadler PJ (2009) Unusual DNA binding modes for metal anticancer complexes. Biochimie 91(10):1198; (j) Berners-Price SJ, Appleton TG (2000) The chemistry of cisplatin in aqueous solution. In: Kelland LR, Farrell NP (eds) Platinum-based drugs in cancer therapy. Humana Press Inc.: Totowa pp 3–35

    Google Scholar 

  20. (a) Baik M-H, Friesner RA, Lippard SJ (2003) Theoretical study of cisplatin binding to purine bases:  why does cisplatin prefer guanine over adenine? J Am Chem Soc 125(46):14082; (b) Mantri Y, Lippard SJ, Baik M-H (2007) Bifunctional binding of cisplatin to DNA:  why does cisplatin form 1,2-Intrastrand cross-links with AG but not with GA? J Am Chem Soc 129(16):5023; (c) Raber J, Zhu C, Eriksson LA (2005) Theoretical study of cisplatin binding to DNA:  the importance of initial complex stabilization. J Phys Chem B 109(21):11006

    Google Scholar 

  21. Sherman SE, Gibson D, Wang AH, Lippard SJ (1985) X-ray structure of the major adduct of the anticancer drug cisplatin with DNA: cis-[Pt(NH3)2(d(pGpG))]. Science 230(4724):412

    Google Scholar 

  22. Takahara PM, Rosenzweig AC, Frederick CA, Lippard SJ (1995) Crystal structure of double stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature 377(6550):649

    Google Scholar 

  23. Takahara PM, Frederick CA, Lippard SJ (1996) Crystal structure of the anticancer drug cisplatin bound to duplex DNA. J Am Chem Soc 118(49):12309

    Google Scholar 

  24. Gelasco A, Lippard SJ (1998) NMR solution structure of a DNA dodecamer duplex containing a cis-Diammineplatinum(II) d(GpG) intrastrand cross-link, the major adduct of the anticancer drug cisplatin. Biochemistry 37(26):9230

    Google Scholar 

  25. Ohndorf UM, Rould MA, He Q, Pabo CO, Lippard SJ (1999) Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 399(6737):708

    Google Scholar 

  26. (a) Nakamoto K, Tsuboi M, Strahan GD (2008) Drug-DNA interactions: structures and spectra. Methods Biochem Anal 51:1; (b) Téletchéa S, Skauge T, Sletten E, Kozelka J (2009) Cisplatin adducts on a GGG sequence within a DNA duplex studied by NMR spectroscopy and molecular dynamics simulations. Chemistry 15(45):12320

    Google Scholar 

  27. Chiavarino B, Crestoni M-E, Fornarini S, Scuderi D, Salpin J-Y (2013) Interaction of cisplatin with adenine and guanine: a combined IRMPD, MS/MS, and theoretical study. J Am Chem Soc 135(4):1445

    Google Scholar 

  28. Fuertes MA, Alonso C, Perez JM (2003) Perez, Biochemical modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev 103(3):645

    Google Scholar 

  29. Silverman AP, Bu W, Cohen SM, Lippard SJ (2002) 2.4-Å Crystal structure of the asymmetric platinum complex {Pt(ammine)(cyclohexylamine)}2+ bound to a dodecamer DNA duplex. J Biol Chem 277(51):49743

    Google Scholar 

  30. Brabec V, Kasparkova J (2005) Modifications of DNA by platinum complexes: relation to resistance of tumors to platinum antitumor drugs. Drug Resist Updat 8(3):131

    Google Scholar 

  31. Hah SS, Stivers KM, de Vere White RW, Henderson PT (2006) Kinetics of carboplatin−DNA binding in genomic DNA and bladder cancer cells as determined by accelerator mass spectrometry. Chem Res Toxicol 19(5):622

    Google Scholar 

  32. de Sousa GF, Wlodarczyk SR, Monteiro G (2014) Carboplatin: molecular mechanisms of action associated with chemoresistance. Braz J Pharm Sci 50(4):693

    Google Scholar 

  33. Terheggen PMAB, Begg AC, Emondt JY, Dubbelman R, Floot BGJ, den Engelse L (1991) Formation of interaction products of carboplatin with DNA in vitro and in cancer patients. Br J Cancer 63:195

    Google Scholar 

  34. (a) Rothenberg ML (2000) Efficacy of oxaliplatin in the treatment of colorectal cancer. Oncology 14(12 Suppl 11):9; (b) Comella P, Casaretti R, Sandomenico C, Avallone A, Franco L (2009) Role of oxaliplatin in the treatment of colorectal cancer. Ther Clin Risk Manag 5:229

    Google Scholar 

  35. Chaney SG, Campbell SL, Bassett E, Wu Y (2005) Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit Rev Oncol Hematol 53(1):3

    Google Scholar 

  36. Wu Y, Pradhan P, Havener J, Boysen G, Swenberg JA, Campbell SL, Chaney SG (2004) NMR solution structure of an oxaliplatin 1,2-d(GG) intrastrand cross-link in a DNA dodecamer duplex. J Mol Biol 341(5):1251

    Google Scholar 

  37. Chaney SG, Campbell SL, Temple B, Bassett E, Wu Y, Faldu M (2004) Protein interactions with platinum–DNA adducts: from structure to function. J Inorg Biochem 98(10):1551

    Google Scholar 

  38. Messori L, Marzo T, Merlino A (2014) The X-ray structure of the complex formed in the reaction between oxaliplatin and lysozyme. Chem Commun 50:8360

    Google Scholar 

  39. (a) Caradonna JP, Lippard SJ, Gait MJ, Singh M (1982) The antitumor drug cis-[Pt(NH3)2Cl2] forms an intrastrand d(GpG) cross-link upon reaction with [d(ApGpGpCpCpT)]2. J Am Chem Soc 104(21):5793; (b) Sarmah A, Roy RK (2013) Understanding the preferential binding interaction of aqua-cisplatins with nucleobase guanine over adenine: a density functional reactivity theory based approach. RSC Advance 3:2822

    Google Scholar 

  40. Zeng W, Zhang Y, Zheng W, Luo Q, Han J, Liu J, Zhao Y, Jia F, Wu K, Wang F (2019) Discovery of cisplatin binding to thymine and cytosine on a single-stranded oligodeoxynucleotide by high resolution FT-ICR mass spectrometry. Molecules 24(10)(1852):1–24

    Google Scholar 

  41. (a) Lippard SJ (1987) Chemistry and molecular biology of platinum anticancer drugs. Pure Appl Chem 59(6):731; (b) Barton JK, Lippard SJ (1980) In: Spiro TG (ed) Metal ions in biology, vol 1. Wiley: New York, p 31

    Google Scholar 

  42. Pinto AL, Lippard SJ (1985) Binding of the antitumor drug cis-diamminedichloroplatinum(II) (cisplatin) to DNA. Biochim Biophys Acta 780(3):167

    Google Scholar 

  43. Melnikov SV, Söll D, Steitz TA, Polikanov YS (2016) Insights into RNA binding by the anticancer drug cisplatin from the crystal structure of cisplatin-modified ribosome. Nucleic Acids Res 44(10):4978

    Google Scholar 

  44. Alberti E, Zampakou M, Donghi DJ (2016) Covalent and non-covalent binding of metal complexes to RNA. Inorg Biochem 163:278

    Google Scholar 

  45. Chapman EG, Hostetter AA, Osborn MF, Miller AL, DeRose VJ (2011) Binding of kinetically inert metal ions to RNA: the case of platinum(II). Met Ions Life Sci 9:347

    Google Scholar 

  46. Zampakou M (2016) Interaction of platinum(II) anticancer drugs with RNA. University of Zurich, Faculty of Science, dissertation. https://doi.org/10.5167/uzh-134915

  47. Pil P, Lippard SJ (1997). In: Bertino JR (ed) Encyclopedia of cancer, vol 1. Academic Press, San Diego, CA, pp 392–410

    Google Scholar 

  48. Reedijk J (1999) why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell? Chem Rev 99(9):2499

    Google Scholar 

  49. Wang X, Guo Z (2007) The role of sulfur in platinum anticancer chemotherapy. Anti-Cancer Agents Med Chem 7(1):19

    Google Scholar 

  50. Sooriyaarachchi M, George GN, Pickering IJ, Narendrane A, Gailer J (2016) Tuning the metabolism of the anticancer drug cisplatin with chemoprotective agents to improve its safety and efficacy. Metallomics 8(11):1170

    Google Scholar 

  51. Riley CM, Sternson LA, Repta AJ, Slyter SA (1983) Monitoring the reactions of cisplatin with nucleotides and methionine by reversed-phase high-performance liquid chromatography using cationic and anionic pairing ions. Anal Biochem 130(1):203

    Google Scholar 

  52. Barnham KJ, Djuram MI, del Murdoch PS, Ranford JD, Sadler PJ (1996) Ring-opened adducts of the anticancer drug carboplatin with sulfur amino acids. Inorg Chem 35(4):1065

    Google Scholar 

  53. (a) Reedjik J (1999) Why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell? Chem Rev 99(9):2499; (b) Barnham KJ, Djuran MI, Del P, Mudroch S, Sadler PJ (1994) Intermolecular displacement of S-bound L-methionine on platinum(II) by guanosine 5′-monophosphate: implications for the mechanism of action of anticancer drugs. J Chem Soc Chem Commun 721; (c) Van Boom SSGE, Reedjik J (1993) Unprecedented migration of [Pt(dien)]2+(dien = 1,5-diamino-3-azapentane) from sulfur to guanosine-N7 in S-guanosyl-L-homocysteine (sgh). J Chem Soc Chem Commun 1397

    Google Scholar 

  54. (a) Hall MD, Hambley TW (2002) Platinum(IV) antitumour compounds: their bioinorganic chemistry. Coord Chem Rev 232(1–2):49; (b) Kenny RG, Chuah SW, Crawford A, Marmion CJ (2017) Platinum(IV) prodrugs – a step closer to Ehrlich’s vision. Eur J Inorg Chem 2017(12):1596; (c) Gibson D (2016) Platinum(IV) anticancer prodrugs - hypotheses and facts. Dalton Trans 45:12983; (d) Chin CF, Wong DYQ, Jothibasu R, Ang WH (2011) Anticancer platinum (IV) prodrugs with novel modes of activity. Curr Top Med Chem 11(21):2602; (e) Venkatesh V, Sadler PJ, Pt(IV) prodrugs, in metallo-drugs: development and action of anticancer agents. In: Sigel A, Sigel H, Freisinger E, Sigel RKO (eds) Metal ions in life sciences, 18 series; pp 69–108; (f) Nemirovski A, Kasherman Y, Tzaraf Y, Gibson D (2007) Reduction of cis, trans, cis-[PtCl2(OCOCH3)2(NH3)2] by aqueous extracts of cancer Cells. J Med Chem 50(23):5554

    Google Scholar 

  55. Pathak RK, Wen R, Kolishetti N, Dhar S (2017) A prodrug of two approved drugs, cisplatin and chlorambucil, for chemo war against cancer. Mol Cancer Ther 14(4):625

    Google Scholar 

  56. Zhao Y, Woods JA, Farrer NJ, Robinson KS, Pracharova J, Kasparkova J, Novakova O, Li H, Salassa L, Pizarro AM, Clarkson GJ, Song L, Brabec V, Sadler PJ (2013) Diazido mixed-amine platinum(IV) anticancer complexes activatable by visible-light form novel dna adducts. Chemistry 19(29):9578

    Google Scholar 

  57. Tian H, Dong J, Chi X, Xu L, Shi H, Shi T (2017) Reduction of cisplatin and carboplatin Pt(IV) prodrugs by homocysteine: kinetic and mechanistic investigations. Int J Chem Kinet 49(9):681

    Google Scholar 

  58. Percástegui EG, Ronson TK, Nitschke JR (2020) Design and applications of water-soluble coordination cages. Chem Rev 120(24):13480

    Google Scholar 

  59. Suntharalingam K, Song Y, Lippard SJ (2014) Conjugation of vitamin E analog α-TOS to Pt(IV) complexes for dual-targeting anticancer therapy. Chem Commun 50(19):2465

    Google Scholar 

  60. Li X, Liu Y, Tian H (2018) Current developments in Pt(IV) prodrugs conjugated with bioactive ligands. Bioinorg Chem Appl 2018:1–18. Article ID 8276139

    Google Scholar 

  61. (a) Ravera M, Gabano E, Zanellato I, Bonarrigo I, Alessio M, Arnesano F, Galliani A, Natile G, Osella D (2015) Cellular trafficking, accumulation and DNA platination of a series of cisplatin-based dicarboxylato Pt(IV) prodrugs. J Inorg Biochem 150:1; (b) Song Y, Suntharalingam K, Yeung JS, Royzen M, Lippard SJ (2013) Synthesis and characterization of Pt(IV) fluorescein conjugates to investigate Pt(IV) intracellular transformations. Bioconjug Chem 24(10):1733

    Google Scholar 

  62. (a) Gabano E, Ravera M, Osella D (2014) Pros and cons of bifunctional platinum(IV) antitumor prodrugs: two are (not always) better than one. Dalton Trans 43:9813; (b) Gibson D (2016) Platinum(IV) anticancer prodrugs - hypotheses and facts. Dalton Trans 45:12983

    Google Scholar 

  63. (a) Novohradsky V, Zanellato I, Marzano C, Pracharova J, Kasparkova J, Gibson D, Gandin V, Osella D, Brabec V (2017) Epigenetic and antitumor effects of platinum(IV)-octanoato conjugates. Sci Rep 7(1):) 3751(1–14); (b) Alessio M, Zanellato I, Bonarrigo I, Gabano E, Ravera M, Osella D (2013) Antiproliferative activity of Pt(IV)-bis(carboxylato) conjugates on malignant pleural mesothelioma cells. J Inorg Biochem 129:52; (c) Ammar AA, Raveendran R, Gibson D, Nassar T, Benita S (2016) A lipophilic Pt(IV) oxaliplatin derivative enhances antitumor activity. J Med Chem 59(19):9035; (d) Zanellato I, Bonarrigo I, Colangelo D, Gabano E, Ravera M, Alessio M, Osella D (2014) Biological activity of a series of cisplatin-based aliphatic bis(carboxylato) Pt(IV) prodrugs: How long the organic chain should be? J Inorg Biochem 140:219

    Google Scholar 

  64. (a) Wexselblatt E, Yavin E, Gibson D (2013) Platinum(IV) prodrugs with haloacetato ligands in the axial positions can undergo hydrolysis under biologically relevant conditions. Angew Chem Int Ed 125(23):6175; (b) Choi S, Filotto C, Bisanzo M, Delaney S, Lagasee D, Whitworth JL, Jusko A, Li C, Wood NA, Willingham J, Schwenker A, Spaulding K (1998) Reduction and anticancer activity of platinum(IV) complexes. Inorg Chem 37(10):2500

    Google Scholar 

  65. Tolan D, Gandin V, Morrison L, El-Nahas A, Marzano C, Montagner D, Erxleben A (2016) Oxidative stress induced by Pt(IV) pro-drugs based on the cisplatin scaffold and indole carboxylic acids in axial position. Sci Rep 6(29367):1–13

    Google Scholar 

  66. (a) Nandi D, Karmakar P, Ray S, Chattopadhyay A, Sarkar (Sain) R, Ghosh AK (2018) Kinetics and mechanism for ligand substitution reactions of some square-planar platinum(II) complexes: stability and reactivity correlations. Inorg Nano-Met-Chem 48(1):16; (b) Peloso A (1973) Kinetics of nickel, palladium and platinum complexes. Coord Chem Rev 10(1–2):123; (c) Basolo F, Pearson RG (1962) The trans effect in metal complexes. Prog Inorg Chem Vol II (Ed. F. A. Cotton) 4:381; (d) Cattalini L (1970) The intimate mechanism of replacements in d8 square planar complexes, in inorganic reaction mechanisms, Part 1 (Ed. J. O. Edwards). Prog Inorg Chem 13:263

    Google Scholar 

  67. (a) Coluccia M, Natile G (2007) Trans-platinum complexes in cancer therapy. Anti-Cancer Agents Med Chem 7(1):111; (b) Aris SM, Farrell NP (2009) Towards antitumor Active trans-platinum compounds. Eur J Inorg Chem 2009(10):1293

    Google Scholar 

  68. (a) Chernyaev II, Ann Inst Platine USSR, 4(1926):261; (b) Basolo F, Pearson RG (eds) (1967) Mechanisms of inorganic reactions: a study of metal complexes in solution. Wiley, Inc.: New York, pp 351–453

    Google Scholar 

  69. Nicholls D (1974) Complexes and first-row transition elements. The Macmillan Press Ltd., London

    Book  Google Scholar 

  70. Dhara SC (1970) A rapid method for the synthesis of cis-[Pt(NH3)2Cl2]. Indian J Chem 8:193

    Google Scholar 

  71. Kurnakow NJ (1894) Ueber complexe Metallbasen. Prakt Chem 50:481

    Google Scholar 

  72. (a) Arpalahti J, Lippert B (1987) An alternative HPLC method for analysing mixtures of isomeric platinum(II) diamine compounds. Inorg Chim Acta 138(3):171; (b) Woollins JD, Woollins A, Rosenberg B (1983) The detection of trace amounts of trans-Pt(NH3)2Cl2 in the presence of cis-Pt(NH3)2Cl2. A high performance liquid chromatographic application of kurnakow’s test. Polyhedron 2(3):175

    Google Scholar 

  73. Ha TBT, Souchard J-P, Wimmer FL, Johnson NP (1990) Determination of cis-trans isomers of amine and pyridine platinum(II) complexes by J(Pt-H) coupling constants. Polyhedron 9(21):2647

    Google Scholar 

  74. Priqueler JRL, Butler IS, Rochon FD (2006) An overview of 195Pt nuclear magnetic resonance spectroscopy. Appl Spectrosc Rev 41(3):185

    Google Scholar 

  75. (a) Connors TA, Cleare MJ, Harrap KR (1979) Structure-activity relationships of the antitumor platinum coordination complexes. Cancer Treat Rep 63:1499; (b) Cleare MJ, Hoeschele JD (1973) Studies on the antitumor activity of group VIII transition metal complexes. Part I. Platinum (II) complexes. Bioinorg Chem 2(3):187; (c) Cleare MJ, Hoeschele JD (1973) Antitumour platinum compounds, relationship between structure and activity. Platinum Met Rev 17(1):2

    Google Scholar 

  76. de Almeida MV, Chaves JDS, Fontes APS, CésarI ET, Gielen M (2006) Synthesis and characterization of platinum(II) complexes from trifluoromethyl phenylenediamine, picoline and N-benzyl ethylenediamine derivatives. J Braz Chem Soc 17(7):1266

    Google Scholar 

  77. Raynaud FI, Boxall FE, Goddard PM, Valenti M, Jones M, Murrer BA, Abrams M, Kelland LR (1997) cis-Amminedichloro(2-methylpyridine) platinum(II) (AMD473), a novel sterically hindered platinum complex: in vivo activity, toxicology, and pharmacokinetics in mice. Clin Cancer Res 3:2063; (b) Holford J, Raynaud F, Murrer BA, Grimaldi K, Hartley JA, Abrams M, Kelland LR (1998) Chemical, biochemical and pharmacological activity of the novel sterically hindered platinum co-ordination complex, cis-[amminedichloro(2-methylpyridine)] platinum(II) (AMD473). Anti-Cancer Drug Des 13(1):1; (c) Munk VP, Diakos CI, Ellis LT, Fenton RR, Messerle BA, Hambley TW (2003) Investigations into the interactions between DNA and conformationally constrained pyridylamineplatinum(II) analogues of AMD473. Inorg Chem 42(11):3582

    Google Scholar 

  78. Smith II JW, McIntyre KJ, Acevedo PV, Encarnacion CA, Tedesco KL, Wang Y, Asmar L, O’Shaughnessy JA (2009) Breast Can Res Treat 118(2):361; (b) Trynda-Lemiesz L, Śliwińska-Hill U (2011) Metal complexes in anticancer therapy. Present and future (Kompleksy metali w terapii nowotworowej. Teraźniejszość i przyszłość o). Nowotory J Oncol 61(5):465

    Google Scholar 

  79. Wilson JJ, Lippard SJ (2012) Acetate-bridged platinum(III) complexes derived from cisplatin. Inorg Chem 51:9852

    Google Scholar 

  80. (a) Drees M, Dengler WM, Hendriks HR, Kelland LR, Fiebig HH (1995) Cycloplatam: a novel platinum compound exhibiting a different spectrum of anti-tumour activity to cisplatin. Eur J Cancer 31A(3):356; (b) Nersesyan A, Perrone E, Roggieri P, Bolognesi C (2003) Genotoxic action of cycloplatam, a new platinum antitumor drug, on mammalian cells in vivo and in vitro. Chemotherapy 49(3):132

    Google Scholar 

  81. Kemp S, Wheate NJ, Buck DP, Nikac M, Collins JG, Aldrich-Wright JR (2007) The effect of ancillary ligand chirality and phenanthroline functional group substitution on the cytotoxicity of platinum(II)-based metallointercalators. J Inorg Biochem 101(7):1049

    Google Scholar 

  82. (a) Farrell N, Ha TTB, Souchard J-P, Wimmer FL, Cros S, Johnson NP (1989) Cytostatic trans-platinum(II) complexes. J Med Chem 32:2240; (b) Farrell N, Kelland LR, Roberts JD, Van Beusichem M (1992) Activation of the trans geometry in platinum antitumor complexes: a survey of the cytotoxicity of trans complexes containing planar ligands in murine L1210 and human tumor panels and studies on their mechanism of action. Cancer Res 52(18):5065; (c) Van Beusichem M, Farrell N (1992) Activation of the trans geometry in platinum antitumor complexes. Synthesis, characterization, and biological activity of complexes with the planar ligands pyridine, N-methylimidazole, thiazole, and quinoline. Crystal and molecular structure of trans-dichlorobis(thiazole)platinum(II). Inorg Chem 31(4):634

    Google Scholar 

  83. Aris SM, Farrell NP (2009) Towards Antitumor Active trans-Platinum Compounds. Eur J Inorg Chem 2009(10):1293

    Google Scholar 

  84. Beusichem MV, Farrell N (1992) Activation of the trans geometry in platinum antitumor complexes. Synthesis, characterization, and biological activity of complexes with the planar ligands pyridine, N-methylimidazole, thiazole, and quinoline. Crystal and molecular structure of trans-dichlorobis(thiazole)platinum(II). Inorg Chem 31(4):634

    Google Scholar 

  85. Kauffman GB, Cowan DO, Slusarczuk G, Kirschner S (1963) cis- and trans-dichlorodiammineplatinum(II). Inorg Synth 7:239

    Google Scholar 

  86. Van Beusichem M, Farrell N (1992) Activation of the trans geometry in platinum antitumor complexes. Synthesis, characterization, and biological activity of complexes with the planar ligands pyridine, N-methylimidazole, thiazole, and quinoline. Crystal and molecular structure of trans-dichlorobis(thiazole)platinum(II). Inorg Chem 31(4):634

    Google Scholar 

  87. (a) Appleton TG, Bailey AJ, Barnham KJ, Hall JR (1992) Aspects of the solution chemistry of trans-diammineplatinum(II) complexes. Inorg Chem 31(14):3077; (b) Rochon FD, Buculei V (2005) Study of Pt(II)-cyclic amines complexes of the types cis- and trans-Pt(amine)2I2 and cis- and trans-Pt(amine)2(NO3)2 and their aqueous products. Inorg Chim Acta 358(6):2040; (c) Johnstone TC, Lippard SJ (2013) Conformational isomerism of trans-[Pt(NH2C6H11)2I2] and the classical Wernerian chemistry of [Pt(NH2C6H11)4]X2 (X = Cl, Br, I). Polyhedron 52:565

    Google Scholar 

  88. van Kralingen CG, de Ridder JK, Reedijk J (1979) Coordination compounds of Pt(II) and Pd(II) with imidazole as a ligand. New synthetic procedures and characterization. Inorg Chim Acta 36:69

    Google Scholar 

  89. van Kralingen CG, de Ridder JK, Reedijk J (1980) Coordination compounds of platinum(II) and palladium(II) with pyrazole as a ligand. New synthetic procedures and characterisation. Transition Met Chem 5:73

    Google Scholar 

  90. Natile G, Coluccia M (1999) Trans-platinum compounds in cancer therapy: a largely unexplored strategy for identifying novel antitumor platinum drugs. In: Clarke MJ, Sadler PJ (eds) Metallopharmaceuticals I. Topics in biological inorganic chemistry, vol 1. Springer, Berlin, Heidelberg

    Google Scholar 

  91. Giardina-Papa D, Intini FP, Pacifico C, Natile G (2013) Isomerization of platinum-coordinated iminoethers induced by spectator ligands: stabilization of the Z anti configuration. Inorg. Chem 52(22):13058

    Google Scholar 

  92. Casas JM, Chisholm MH, Sicilia MV, Streib WE (1991) Imino-ether complexes of platinum: cis-[PtCl2(NH=C(OR)Me)2] and [PtCl4(NH=C(OR)Me)2], where R = Me, Et and Pri. Preparation, characterization and X-ray structure for [PtCl4(NH=C(OPri)Me)2]2. Polyhedron 10(13):1573

    Google Scholar 

  93. Dox AW (1928) Acetamidine hydrochloride, organic syntheses, Coll. vol 1, p 5 (1941); vol 8, p 1 (1928); (b) Dickman DA, Boes M, Meyers AI (1989) (S')-N,N-Dimethyl-N'-(1-tert-Butoxy-3-Methyl-2-Butyl Formamidine, [Methanimidamide, N'-[1-[(1,1-dimethylethoxy)methyl]-2-methylpropyl]-N,N-dimethyl-, (S)-]. Organic Syntheses, Coll. vol 8, p 204 (1993); vol 67, p 52 (1989)

    Google Scholar 

  94. Greenhill JV, Lue P (1993) 5 amidines and guanidines in medicinal chemistry. Prog Med Chem 30:203

    Google Scholar 

  95. (a) Arya S, Kumar N, Roy P, Sondhi SM (2013) Synthesis of amidine and bis amidine derivatives and their evaluation for anti-inflammatory and anticancer activity. Eur J Med Chem 59:7; (b) Omar AM, Bajorath J, Ihmaid S, Mohamed HM, El-Agrody AM, Mora A, El-Arabya ME, Ahmed HEA (2020) Novel molecular discovery of promising amidine-based thiazole analogues as potent dual Matrix Metalloproteinase-2 and 9 inhibitors: anticancer activity data with prominent cell cycle arrest and DNA fragmentation analysis effects. Bioorg Chem 101(103992):1–14; (c) Sondhi SM, Rani R, Gupta PP, Agrawal SK, Saxena AK (2009) Synthesis, anticancer, and anti-inflammatory activity evaluation of methanesulfonamide and amidine derivatives of 3,4-diaryl-2-imino-4-thiazolines. Mol Divers 13:357

    Google Scholar 

  96. (a) Marzano C, Sbovata SM, Bettio F, Michelin RA, Seraglia R, Kiss T, Venzo A, Bertani R (2007) Solution behaviour and biological activity of bisamidine complexes of platinum(II). J Biol Inorg Chem 12:477; (b) Intini FP, Pellicani RZ, Boccarelli A, Sasanelli R, Coluccia M, Natile G (2008) Synthesis, characterization, and in vitro antitumor activity of new amidineplatinum(II) complexes obtained by addition of ammonia to coordinated acetonitrile. Eur J Inorg Chem 29:4555; (c) Sbovata SM, Bettio F, Marzano C, Mozzon M, Bertani R, Benetollo F, Michelin RA (2008) Benzylamidine complexes of platinum(II) derived by nucleophilic addition of primary and secondary amines. X-ray crystal structure of trans-[PtCl2{Z-N(H)=C(NHMe)CH2Ph}2]. Inorg Chim Acta 361(11):3109; (d) Marzano C, Sbovata SM, Gandin V, Michelin RA, Venzo A, Bertani R, Seraglia R (2009) Cytotoxicity of cis-platinum(II) cycloaliphatic amidine complexes: ring size and solvent effects on the biological activity. J Inorg Biochem 103(8):1113; (e) Marzano C, Sbovata SM, Gandin V, Colavito D, Del Giudice E, Michelin RA, Venzo A, Seraglia R, Benetollo F, Schiavon M, Bertani R (2010) A new class of antitumor trans-amine-amidine-Pt(II) cationic complexes: influence of chemical structure and solvent on in vitro and in vivo tumor cell proliferation. J Med Chem 53(16):6210; (f) Michelin RA, Sgarbossa P, Sbovata SM, Gandin V, Marzano C, Bertani R (2011) Chemistry and biological activity of platinum amidine complexes. Chem Med Chem 6(7):1172

    Google Scholar 

  97. Hambley TW (2001) Platinum binding to DNA: structural controls and consequences. J Chem Soc, Dalton Trans 2711

    Google Scholar 

  98. Park GY, Wilson JJ, Song Y, Lippard SJ (2012) Phenanthriplatin, a monofunctional DNA-binding platinum anticancer drug candidate with unusual potency and cellular activity profile. PNAS 109(30):11987

    Google Scholar 

  99. Ma Z, Choudhury JR, Wright MW, Day CS, Saluta G, Kucera GL, Bierbach U (2008) A non-cross-linking platinum−acridine agent with potent activity in non-small-cell lung cancer. J Med Chem 51(23):7574

    Google Scholar 

  100. Ding S, Bierbach U (2016) Linker design for the modular assembly of multifunctional and targeted platinum(II)-containing anticancer agents. Dalton Trans 45:13104

    Google Scholar 

  101. Bierbach U, Hambley TW, Farrell N (1998) Modification of platinum(II) antitumor complexes with sulfur ligands. 1. Synthesis, structure, and spectroscopic properties of cationic complexes of the types [PtCl(diamine)(L)]NO3 and [{PtCl(diamine)}2(L-L)](NO3)2 (L = Monofunctional Thiourea Derivative; L-L = Bifunctional Thiourea Derivative). Inorg Chem 37(4):708

    Google Scholar 

  102. Monroe JD, Hruska HL, Ruggles HK, Williams KM, Smith ME (2018) Anti-cancer characteristics and ototoxicity of platinum(II) amine complexes with only one leaving ligand. PLoS ONE 13(3):e0192505 (1–21)

    Google Scholar 

  103. Kloster M, Kostrhunova H, Zaludova R, Malina J, Kasparkova J, Brabec V, Farrell N (2004) Trifunctional dinuclear platinum complexes as DNA−protein cross-linking agents. Biochemistry 43(24):7776

    Google Scholar 

  104. Kidani Y, Inagaki K, Iigo M, Hoshi A, Kuretani K (1978) Antitumor activity of 1,2-diaminocyclohexaneplatinum complexes against Sarcoma-180 ascites form. J Med Chem 21(12):1315

    Google Scholar 

  105. Štarha P, Trávníček Z, Popa I, Dvořák Z (2014) Synthesis, characterization and in vitro antitumor activity of platinum(II) oxalato complexes involving 7-azaindole derivatives as coligands. Molecules 19(8):10832

    Google Scholar 

  106. Štarha P, Trávníček Z, Popa I (2010) Platinum(II) oxalato complexes with adenine-based carrier ligands showing significant in vitro antitumor activity. J Inorg Biochem 104(6):639

    Google Scholar 

  107. (a) Otway DJ, Rees Jr WS (2000) Group 2 element β-diketonate complexes: synthetic and structural investigations. Coord Chem Rev 210(1):279; (b) Burrows AD, Mahon MF, Renouf CL, Richardson C, Warren AJ, Warren JE (2012) Dipyridyl β-diketonate complexes and their use as metalloligands in the formation of mixed-metal coordination networks. Dalton Trans 41:4153; (c) Hori A, Mizutani M (2011) Synthesis and crystal structure differences between fully and partially fluorinated β-diketonate metal (Co2+, Ni2+, and Cu2+) Complexes. Int J Inorg Chem 2011:1–8. Article ID 291567

    Google Scholar 

  108. Wang H, Zhang Z, Wang H, Guo L, Li L (2019) Metal β-diketonate complexes as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates under mild conditions. Dalton Trans 48:15970

    Google Scholar 

  109. (a) Biju S, Ambili Raj DB, Reddy MLP, Kariuki BM (2006) Synthesis, crystal structure, and luminescent properties of novel Eu3+ heterocyclic β-diketonate complexes with bidentate nitrogen donors. Inorg Chem 45(26):10651; (b) Lima NBD, Silva AIS, Gerson Jr PC, Gonçalves SMC, Simas AM (2015) Faster synthesis of beta-diketonate ternary europium complexes: elapsed times & reaction yields. PLoS ONE 10(12):e0143998; (c) Andreiadis ES, Gauthier N, Imbert D, Demadrille R, Pécaut J, Mazzanti M (2013) Lanthanide complexes based on β-diketonates and a tetradentate chromophore highly luminescent as powders and in polymers. Inorg Chem 52(24):14382; (d) Hasegawa Y, Kitagawa Y, Nakanishi T (2018) Effective photosensitized, electrosensitized, and mechanosensitized luminescence of lanthanide complexes. NPG Asia Materials 10:52

    Google Scholar 

  110. Fu C-Y, Chen L, Wang X, Lin L-R (2019) Synthesis of bis-β-diketonate lanthanide complexes with an azobenzene bridge and studies of their reversible photo/thermal isomerization properties. ACS Omega 4(13):15530

    Google Scholar 

  111. (a) Hudson ZM, Sun C, Helander MG, Amarne H, Lu Z, Wang S (2010) Enhancing phosphorescence and electrophosphorescence efficiency of cyclometalated Pt(II) compounds with triarylboron. Adv Funct Mater 20(20):3426; (b) Hudson ZM, Helander MG, Lu Z, Wang S (2011) Highly efficient orange electrophosphorescence from a trifunctional organoboron-Pt(II) complex. Chem Commun 47:755

    Google Scholar 

  112. Mou X, Wu Y, Liu S, Shi M, Liu X, Wang C, Sun S, Zhao Q, Zhou X, Huang WJ (2011) Phosphorescent platinum(II) complexes containing different β-diketonate ligands: synthesis, tunable excited-state properties, and their application in bioimaging. J Mater Chem 21:13951

    Google Scholar 

  113. Vaidya SR, Shelke VA, Jadhav SM, Shankarwar SG, Chondhekar TK (2012) Synthesis and characterization of β-diketone ligands and their antimicrobial activity. Arch Appl Sci Res 4(4):1839

    Google Scholar 

  114. Antony S, Kuttan R, Kuttan G (1999) Immunomodulatory activity of curcumin. Immun Invest 28(5–6):291

    Google Scholar 

  115. Srimal RC, Dhawan B (1973) Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 25(6):447

    Google Scholar 

  116. Elizabeth K, Rao MNA (1990) Oxygen radical scavenging activity of curcumin. Int J Pharm 58(3):237

    Google Scholar 

  117. (a) Kuttan R, Bhanumathy P, Nirmala K, George MC (1985) Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett 29(2):197; (b) Ruby AJ, Kuttan G, Babu KD, Rajasekharan KN, Kuttan R (1995) Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett 94(20):74

    Google Scholar 

  118. Karvembu R, Jayabalakrishnan C, Natarajan K (2002) Thiobis(β-diketonato)-bridged binuclear ruthenium(III) complexes containing triphenylphosphine or triphenylarsine: synthetic, spectral, catalytic and antimicrobial studies. Trans Met Chem 27:574

    Google Scholar 

  119. De Pascali SA, Papadia P, Ciccarese A, Pacifico C, Fanizzi FP (2005) First examples of β-diketonate platinum(II) complexes with sulfoxide ligands. Eur J Inorg Chem 2005(4):788

    Google Scholar 

  120. Hudson ZM, Blight BA, Wang S (2012) Efficient and high yield one-pot synthesis of cyclometalated platinum(II) β-diketonates at ambient temperature. Org Lett 14(7):1700

    Google Scholar 

  121. Wilson JJ, Lippard SJ (2012) In vitro anticancer activity of cis-diammineplatinum(II) complexes with β-diketonate leaving group ligands. J Med Chem 55(11):5326

    Google Scholar 

  122. Raza MK, Mitra K, Shettar A, Basu U, Kondaiah P, Chakravarty AR (2016) Photoactive platinum(II) β-diketonates as dual action anticancer agents. Dalton Trans 45:13234

    Google Scholar 

  123. Kajal A, Bala S, Kamboj S, Sharma N, Sain V (2013) Schiff bases: a versatile pharmacophore. J Catal 2013:1–14 Article ID 893512

    Google Scholar 

  124. Miri R, Razzaghi-asl N, Mohammadi MK (2013) QM study and conformational analysis of an isatin Schiff base as a potential cytotoxic agent. J Mol Model 19(2):727

    Google Scholar 

  125. (a) Tadele KT, Tsega TW (2019) Schiff bases and their metal complexes as potential anticancer candidates: a review of recent works. Anti-Can Agents Med Chem 9(15):1786; (b) Abd El-Halim HF, Mohamed GG, Anwar MN (2018) Antimicrobial and anticancer activities of Schiff base ligand and its transition metal mixed ligand complexes with heterocyclic base. Appl Organomet Chem 32(1):e3899; (c) Ejidike IP, Ajibade PA (2016) Synthesis, characterization, anticancer, and antioxidant studies of Ru(III) complexes of monobasic tridentate Schiff bases. Bioinorg Chem Appl (8)(2016):1–11 Article ID 9672451; (d) Parveen S (2020) Recent advances in anticancer ruthenium Schiff base complexes. Appl Organomet Chem 34(8):e5687

    Google Scholar 

  126. Mbugua SN, Sibuyi NRS, Njenga LW, Odhiambo RA, Wandiga SO, Meyer M, Lalancette RA, Onani MO (2020) New palladium(II) and platinum(II) complexes based on pyrrole schiff bases: synthesis, characterization, x-ray structure, and anticancer activity. ACS Omega 5(25):14942

    Google Scholar 

  127. (a) Kelley SL, Basu A, Teicher BA, Hacker MP, Hamer DH, Lazo JS (1988) Overexpression of metallothionein confers resistance to anticancer drugs. Science 241(4874):1813; (b) Ishikawa T, Ali-Osman FJ (1993) Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. Biol Chem 268(27):20116; (c) Marchan V, Moreno V, Pedroso E, Grandas A (2001) Towards a better understanding of the cisplatin mode of action. Chem Eur J 7(4):808

    Google Scholar 

  128. Lau JK-C, Deubel DV (2005) J loss of ammine from platinum(II) complexes: implications for cisplatin inactivation, storage, and resistance. Chem Eur J 11(9):2849

    Google Scholar 

  129. Corinti D, Coletti C, Re N, Paciotti R, Maître P, Chiavarino B, Crestoni ME, Fornarini S (2019) Short-lived intermediates (encounter complexes) in cisplatin ligand exchange elucidated by infrared ion spectroscopy. Int J Mass Spectrom 435:7

    Google Scholar 

  130. (a) Halamikova A, Heringova P, Kasparkova J, Intini FP, Natile G, Nemirovski A, Gibson D, Brabec V (2008) Cytotoxicity, mutagenicity, cellular uptake, DNA and glutathione interactions of lipophilic trans-platinum complexes tethered to 1-adamantylamine. J Inorg Biochem 102(5–6):1077; (b) Hagrman D, Goodisman J, Dabrowiak JC, Souid AK (2003) Kinetic study on the reaction of cisplatin with metallothionein. Drug Metabol Disp 31(7):916; (c) Kasparkova J, Novakova O, Vrana O, Intini F, Natile G, Brabec V (2006) Molecular aspects of antitumor effects of a new platinum(IV) drug. Mol Pharmacol 70(5):1708

    Google Scholar 

  131. Wang X, Guo Z (2007) The role of sulfur in platinum anticancer chemotherapy. Anti-can. Agents. Med Chem 7(1):19

    Google Scholar 

  132. Williams KM, Rowan C, Mitchell J (2004) Effect of amine ligand bulk on the interaction of methionine with platinum(II) diamine complexes. Inorg Chem 43(3):1190

    Google Scholar 

  133. Becker K, Herold-Mende C, Park JJ, Lowe G, Schirmer RH (2001) Human thioredoxin reductase is efficiently inhibited by (2,2ʹ:6ʹ,2ʹ ʹ-terpyridine)platinum(iII complexes. Possible implications for a novel antitumor strategy. J Med Chem 44(17):2784; (b) Cummings SD (2009) Platinum complexes of terpyridine: interaction and reactivity with biomolecules. Coord Chem Rev 253(9–10):1495

    Google Scholar 

  134. Ahmadi R, Urig S, Hartmann M, Helmke BM, Koncarevic S, Allenberger B, Kienhoefer C, Neher M, Steiner H-H, Unterberg A, Herold-Mende C, Becker K (2006) Antiglioma activity of 2,2′:6′,2ʺ-terpyridineplatinum(II) complexes in a rat model-effects on cellular redox metabolism. Free Radic Biol Med 40(5):763

    Google Scholar 

  135. Lo Y-C, Ko T-P, Su W-C, Su T-L, Wang AH-J (2009) Terpyridine–platinum(II) complexes are effective inhibitors of mammalian topoisomerases and human thioredoxin reductase 1. J Inorg Biochem 103(7):1082

    Google Scholar 

  136. Reedijk J (1999) Why does cisplatin reach guanine-N7 with competing s-donor ligands available in the cell? Chem Rev 99(9):2499; Bloemink M, Reedijk J (1996) In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 32. Marcel Dekker, New York, p 641

    Google Scholar 

  137. (a) Gladyshev VN, Factor VM, Housseau F, Hatfield DL (1998) Contrasting patterns of regulation of the antioxidant selenoproteins, thioredoxin reductase, and glutathione peroxidase, in cancer cells. Biochem Biophys Res Commun 251(2):488; (b) Lincoln DT, Emadi WMA, Tonisson KF, Clarke FM (2003) The thioredoxin-thioredoxin reductase system: over-expression in human cancer. Anticancer Res 23(3B):2425; (c) Kahlos K, Soini Y, Saily M, Koistinen P, Kakko S, Paakko P, Holmgren A, Kinnula VL (2001) Up-regulation of thioredoxin and thioredoxin reductase in human malignant pleural mesothelioma. Int J Cancer 95(3):198; (d) Sasada T, Ueda H, Nakamura S, Sato N, Kitaoka Y, Gon Y, Takabayashi A, Spyrou G, Holmgren A, Yodoi J (1999) Possible involvement of thioredoxin reductase as well as thioredoxin in cellular sensitivity to cis-diamminedichloroplatinum (II). Free Radic Biol Med 27(5–6):504

    Google Scholar 

  138. Gromer S, Urig S, Becker K (2004) The thioredoxin system-from science to clinic. Med Res Rev 24(1):40

    Google Scholar 

  139. Morgan GT, Burstall FH (1934) Researches on residual affinity and co-ordination. Part XXXV. 2:2′:2″-Tripyridylplatinum salts. J Chem Soc 1498

    Google Scholar 

  140. (a) Annibale G, Brandolisio M, Pitteri B (1995) New routes for the synthesis of chloro(diethylenetriamine) platinum(II) chloride and chloro(2,2′:6′,2″-terpyridine) platinum(II) chloride dehydrate. Polyhedron 14(3):451; (b) Cini R, Donati A, Giannettoni R (2001) Synthesis and structural characterization of chloro(2,2′;6′,2″-terpyridine)platinum(II) trichloro(dimethylsulfoxide)platinate(II). Density functional analysis of model molecules. Inorg Chim Acta 315(1):73; (c) Chakraborty S, Wadas TJ, Hester H, Flaschenreim C, Schmehl R, Eisenberg R (2005) Synthesis, structure, characterization, and photophysical studies of a new platinum terpyridyl-based triad with covalently linked donor and acceptor groups. Inorg Chem 44(18):6284; (d) Cummings SD (2009) Platinum complexes of terpyridine: synthesis, structure and reactivity. Coord Chem Rev 253(3–4):449

    Google Scholar 

  141. Casas J, Garcıa-Tasende M, Sordo J (2000) Main group metal complexes of semicarbazones and thiosemicarbazones. A structural review. Coord Chem Rev 209(1):197

    Google Scholar 

  142. (a) Mrozek-Wilczkiewicz A, Malarz K, Rejmund M, Polanski J, Musiol R (2019) Anticancer activity of the thiosemicarbazones that are based on di-2-pyridine ketone and quinoline moiety. Eur J Med Chem 171:180; (b) Arora S, Agarwal S, Singhal SB (2014) Anticancer activities of thiosemicarbades/thiosemicarbazones: a review. Int J Pharm Pharmaceutic Sci 6(9):34; (c) Heffeter P, Pape VFS, Enyedy ÉA, Keppler BK, Szakacs G, Kowol CR (2018) Anticancer thiosemicarbazones: chemical properties, interaction with iron metabolism, and resistance development. Antiox Redox Signal 30(8):1–63 https://doi.org/10.1089/ars.2017.7487

  143. Malarz K, Mrozek-Wilczkiewicz A, Serda M, Rejmund M, Polanski J, Musiol R (2018) The role of oxidative stress in activity of anticancer thiosemicarbazones. Oncotarget 9(25):17689

    Google Scholar 

  144. (a) Shipman Jr C, Smith SH, Drach JC, Klayman DL (1981) Antiviral activity of 2-acetylpyridine thiosemicarbazones against herpes simplex virus. Antimicrob Agents Chemother 19(4):682; (b) Padmanabhan P, Khaleefathullah S, Kaveri K, Palani G, Ramanathan G, Thennarasu S, Sivagnanam UT (2017) Antiviral activity of thiosemicarbazones derived from α-amino acids against dengue virus. J Med Virol 89(3):546

    Google Scholar 

  145. Pahontu E, Julea F, Rosu T, Purcarea V, Chumakov Y, Petrenco P, Gulea A (2015) Antibacterial, antifungal and in vitro antileukaemia activity of metal complexes with thiosemicarbazones. J Cell Mol Med 19(4):865

    Google Scholar 

  146. Grayson ML, Crowe SM, McCarthy JS, Mills J, Mouton JW, Norrby SR, Paterson DL, Pfaller MA (2010) Kucers’ the use of antibiotics sixth edition: a clinical review of antibacterial, antifungal and antiviral drugs. CRC Press. pp 1673. ISBN 978-1-4441-4752-0

    Google Scholar 

  147. Moorthy NSHN, Cerqueira NMFSA, Ramos MJ, Fernandes PA (2013) Aryl- and heteroaryl-thiosemicarbazone derivatives and their metal complexes: a pharmacological template. Recent Pat Anticancer Drug Discov 8(2):168

    Google Scholar 

  148. Ribeiro AG, de Almeida SMV, de Oliveira JF, de Lima Souza TRC, dos Santos KL, de Barros Albuquerque AP, de Britto Lira Nogueira MC, de Carvalho Jr LB, de Moura RO, da Silva AC, Pereira VRA, de Castro MCAB, De Lima MCA (2019) Novel 4-quinoline-thiosemicarbazone derivatives: Synthesis, antiproliferative activity, in vitro and in silico biomacromolecule interaction studies and topoisomerase inhibition. Eur J Med Chem 182(111592):1–16

    Google Scholar 

  149. Shyamsivappan S, Vivek R, Saravanan A, Arasakumar T, Suresh T, Athimoolam S, Mohan PS (2020) A novel 8-nitro quinoline-thiosemicarbazone analogues induces G1/S & G2/M phase cell cycle arrest and apoptosis through ROS mediated mitochondrial pathway. Bioorg Chem 97:103709

    Google Scholar 

  150. Acharya PT, Bhavsar ZA, Jethava DJ, Patel DB, Patel HD (2021) A review on development of bio-active thiosemicarbazide derivatives: recent advances. J Mol Struct 1226(Part A):129268

    Google Scholar 

  151. (a) Beraldo H, Gambinob D (2004) The wide pharmacological versatility of semicarbazones, thiosemicarba-zones and their metal complexes. Mini-Rev Med Chem 4(1):31; (b) Melha KSA (2008) In-vitro antibacterial, antifungal activity of some transition metal complexes of thiosemicarbazone Schiff base (HL) derived from N4-(7′-chloroquinolin-4′-ylamino) thiosemicarbazide. J Enz Inhib Med Chem 23(4):493

    Google Scholar 

  152. Prajapati NP, Patel HD (2019) Novel thiosemicarbazone derivatives and their metal complexes: recent development. Synth. Commun Rev 49(21):2767

    Google Scholar 

  153. Merlot AM, Kalinowski DS, Richardson DR (2013) Novel chelators for cancer treatment: where are we now? Antiox Redox Signal 18(8):973

    Google Scholar 

  154. Campbell MJM (1975) Transition metal complexes of thiosemicarbazide and thiosemicarbazones. Coord Chem Rev 15(2–3):279

    Google Scholar 

  155. Matesanz AI, Leitao I, Souza P (2013) Palladium(II) and platinum(II) bis(thiosemicarbazone) complexes of the 2,6-diacetylpyridine series with high cytotoxic activity in cisplatin resistant A2780cisR tumor cells and reduced toxicity. J Inorg Biochem 125:26

    Google Scholar 

  156. Lin X-D, Liu Y-H, Xie C-Z, Baoa W-G, Shen J, Xu J-Y (2017) Three Pt(II) complexes based on thiosemicarbazone: synthesis, HSA interaction, cytotoxicity, apoptosis and cell cycle arrest. RSC Adv 7:26478

    Google Scholar 

  157. Huang Y, Kong E, Gan C, Liu Z, Lin Q, Cui J (2015) Synthesis and antiproliferative activity of steroidal thiosemicarbazone platinum (Pt(II)) complexes. Bioinorg Chem Appl 2015(742592):1–7

    Google Scholar 

  158. (a) Kelloff GJ, Crowell JA, Hawk ET, Steele VE, Lubet RA, Boone CW, Covey JM, Doody LA, Omenn GS, Greenwald P, Hong WK, Parkinson BR, Baghery D, Baxter GT, Blunden M, Doeltz MK, Zisenhamer KM, Johnson K, Knapp GG, Longfellow DG, Malone WF, Nayfield SG, Seifried HZ, Swall LM, Sigman CC (1996) Strategy and planning for chemopreventive drug development: clinical development plans II. J Cell Biochem 63(S26)(Suppl.):54; (b) Mugesh G, du Mont WW, Sies H (2001) chemistry of biologically important synthetic organoselenium compounds. Chem Rev 101(7):2125; (c) Nogueira CW, Zevi G, Rocha JBT (2004) Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 104(12):6255

    Google Scholar 

  159. Liu Q, Zhang J, Ke X, Mei Y, Zhu L, Guo Z (2001) ESMS and NMR investigations on the interaction of the anticancer drug cisplatin and chemopreventive agent selenomethionine. J Chem Soc, Dalton Trans 911

    Google Scholar 

  160. Robey S (2013) Reactions of platinum(II) compounds with selenium containing amino acids. Masters Theses & Specialist Projects. Paper 1252

    Google Scholar 

  161. Chopade SM, Phadnis PP, Wadawale A, Hodage AS, Jain VK (2012) Synthesis and characterization of (ethylenediamine)/(diammine)platinum(II) coordinated to seleno ligands containing carboxylic acid functionality. Inorg Chim, Acta 385:185.

    Google Scholar 

  162. Chopade SM, Phadnis PP, Hodage AS, Wadawale A, Jain VK (2015) Synthesis, characterization, structures and cytotoxicity of platinum(II) complexes containing dimethylpyrazole based selenium ligands. Inorg Chim, Acta 427:72

    Google Scholar 

  163. Zeng L, Li Y, Li T, Cao W, Yi Y, Geng W, Sun Z, Xu H (2014) Selenium–platinum coordination compounds as novel anticancer drugs: selectively killing cancer cells via a reactive oxygen species (ROS)-mediated apoptosis route. Chem Asian J 9(8):2295

    Google Scholar 

  164. Wu F, Cao W, Xu H, Zhu M, Wang J, Ke X (2017) Treatment with a selenium-platinum compound induced T-cell acute lymphoblastic leukemia/lymphoma cells apoptosis through the mitochondrial signaling pathway. Oncol Lett 13(3):1702

    Google Scholar 

  165. Li F, Li T, Han X, Zhuang H, Nie G, Xu H (2018) Nanomedicine assembled by coordinated selenium–platinum complexes can selectively induce cytotoxicity in cancer cells by targeting the glutathione antioxidant defense system. ACS Biomater Sci Eng 4(6):1954

    Google Scholar 

  166. Li T, Smet M, Dehaen W, Xu H, Appl ACS (2016) Selenium–platinum coordination dendrimers with controlled anti-cancer activity. Mater Interfaces 8(6):3609

    Google Scholar 

  167. Li T, Smet M, Dehaen W, Xu H (2015) Selenium–platinum coordination dendrimers with controlled anti-cancer activity. ACS Appl Mater Interfaces 8(6)(2016):3609

    Google Scholar 

  168. Appelhans D, Smet M, Khinmich G, Komber H, Voigt D, Lhotak P, Kuckling D, Voit B (2005) Lysine dendrimers based on thiacalix[4]arene core moieties as molecular scaffolds for supramolecular host systems. New J Chem 29:1386

    Google Scholar 

  169. (a) Phillips AD, Gonsalvi L, Romerosa A, Vizza F, Peruzzini M (2004) Coordination chemistry of 1,3,5-triaza-7-phosphaadamantane (PTA): transition metal complexes and related catalytic, medicinal and photoluminescent applications. Coord Chem Rev 248(11–12):955; (b) Murray BS, Babak MV, Hartinger CG, Dyson PJ (2016) The development of RAPTA compounds for the treatment of tumors. Coord Chem Rev 306(Part 1):86

    Google Scholar 

  170. Živković MD, Kljun J, Ilic-Tomic T, Pavic A, Veselinović A, Manojlović DD, Nikodinovic-Runic J, Turel I (2018) A new class of platinum(II) complexes with the phosphine ligand pta which show potent anticancer activity. Inorg Chem Front 5:39

    Google Scholar 

  171. Kim JH, Reeder E, Parkin S, Awuah SG (2019) Gold(I/III)-phosphine complexes as potent antiproliferative agents. Sci Rep 9(12335):1–18

    Google Scholar 

  172. (a) Fourie E, Erasmus E, Swarts JC, Jakob A, Lang H, Joone GK, Van Rensburg CEJ (2011) Cytotoxicity of ferrocenyl–ethynyl phosphine metal complexes of gold and platinum. Anticancer Res 31(3):825; (b) Cini R, Tamasi G, Defazio S, Corsini M, Zanello P, Messori L, Marcon G, Piccioli F, Orioli P (2003) Study of ruthenium(II) complexes with anticancer drugs as ligands. Design of metal-based phototherapeutic agents. Inorg Chem 42(24):8038; (c) Tisato F, Porchia M, Santini C, Gandin V, Marzano C (2019) Phosphine-copper(I) complexes as anticancer agents: design, synthesis, and physicochemical characterization. Part I, copper(I) chemistry of phosphines, functionalized phosphines and phosphorus heterocycles. pp 61–82; (d) Khan RA, Usman M, Dhivya R, Balaji P, Alsalme A, AlLohedan H, Arjmand F, AlFarhan K, Akbarsha MA, Marchetti F, Pettinari C, Tabassum S (2017) Heteroleptic copper(I) complexes of “scorpionate” bis-pyrazolyl carboxylate ligand with auxiliary phosphine as potential anticancer agents: an insight into cytotoxic mode. Sci Rep 7(45229):1–17; (e) Berners-Price SJ, Sadler PJ (1988) Phosphines and metal phosphine complexes: Relationship of chemistry to anticancer and other biological activity. In: Bioinorganic chemistry. Structure and bonding, vol 70. Springer, Berlin, Heidelberg

    Google Scholar 

  173. Yilmaz VT, Icsel C, Turgut OR, Aygun M, Erkisa M, Turkdemir MH, Ulukaya E (2018) Synthesis, structures and anticancer potentials of platinum(II) saccharinate complexes of tertiary phosphines with phenyl and cyclohexyl groups targeting mitochondria and DNA. Eur J Med Chem 155:609

    Google Scholar 

  174. Lippert B (1999) Cisplatin: Chemistry and biochemistry of a leading anticancer drug. Wiley-VCH, Weinheim

    Book  Google Scholar 

  175. Wong E, Giandomenico CM (1999) Current status of platinum-based antitumor drugs. Chem Rev 99(9):2451

    Google Scholar 

  176. Farrell N (2000) Platinum-based drugs in cancer therapy. In: Kelland LR, Farrell NP (eds) Humana Press, Totowa, pp 321–338

    Google Scholar 

  177. (a) Wheate NJ, Collins JG (2003) Multi-nuclear platinum complexes as anti-cancer drugs. Coord Chem Rev 241(1–2):133; (b) Farrell NP (2015) Multi-platinum anti-cancer agents. Substitution-inert compounds for tumor selectivity and new targets. Chem Soc Rev 44:8773

    Google Scholar 

  178. (a) Farrell N, Qu Y (1989) Chemistry of bis(platinum) complexes. Formation of trans derivatives from tetraamine complexes. Inorg Chem 28(18):3416; (b) Farrell N, del Ameida SG, Skov KA (1988) Bis(platinum) complexes containing two platinum cis-diammine units. Synthesis and initial DNA-binding studies. J Am Chem Soc 110(15):5018

    Google Scholar 

  179. Farrell N, Qu Y, Feng L, Van Houten B (1990) A comparison of chemical reactivity, cytotoxicity, interstrand crosslinking and DNA sequence specificity of bis(platinum) complexes containing monodentate or bidentate coordination spheres with their monomeric analogs. Biochemistry 29(41):9522

    Google Scholar 

  180. (a) Broomhead JA, Rendina LM, Sterns M (1991) Dinuclear complexes of platinum with the 4,4'-dipyrazolylmethane ligand. Synthesis, characterization, and x-ray crystal structure of .gamma.-bis(4,4'-dipyrazolylmethane-N,N')bis[dichloroplatinum(II)]-N,N-dimethylformamide (1/2) and related complexes. Inorg Chem 31(10):1880; (b) Broomhead JA, Rendina LM, Webster LK (1993) Dinuclear complexes of platinum having anticancer properties. DNA-binding studies and biological activity of Bis(4,4′-dipyrazolylmethane-N,N′)-bis[dichloroplatinum(II) and related complexes. J Inorg Biochem 49(3):221; (c) Rendina LM (1991) Ph.D. Thesis, Australian National University

    Google Scholar 

  181. Zhao G, Lin H, Zhu S, Sun H, Chen Y (1998) Synthesis and biological activity of binuclear platinum complexes containing two monofunctional cis-[Pt(NH3)2Cl]+ units bridged by 4,4′-dipyridyl selenides or sulfides. Anti-Cancer Drug Des 13(7):769

    Google Scholar 

  182. Komeda S, Lutz M, Spek AL, Chikuma M, Reedijk J (2000) New antitumor-active azole-bridged dinuclear platinum(II) complexes: synthesis, characterization, crystal structures, and cytotoxic studies. Inorg Chem 39(19):4230; (b) Komeda S, Lutz M, Spek AL, Yamanaka Y, Sato T, Chikuma M, Reedijk J (2002) A novel isomerization on interaction of antitumor-active azole-bridged dinuclear platinum(II) complexes with 9-ethylguanine. Platinum(II) Atom Migration from N2 to N3 on 1,2,3-triazole. J Am Chem Soc 124(17):4738

    Google Scholar 

  183. Jansen BAJ, van der Zwan J, Reedijk J, den Dulk H, Brouwer J (1999) A tetranuclear platinum compound designed to overcome cisplatin resistance. Eur J Inorg Chem 1999(9):1429

    Google Scholar 

  184. Cerón-Carrasco JP, Jacquemin D (2015) Photoactivatable platinum(II) compounds: in search of novel anticancer drugs. Theor Chem Acc 134, Article No. 146:1–8

    Google Scholar 

  185. (a) Heringiova P, Woods J, Mackay FM, Kasparkova J, Sadler PJ, Brabec V (2006) Transplatin is cytotoxic when photoactivated: enhanced formation of DNA cross-links. J Med Chem 49(26):7792; (b) Zhao Y, Roberts GM, Greenough SE, Farrer NJ, Paterson MJ, Powell WH, Stavros VG, Sadler PJ (2012) Two-photon-activated ligand exchange in platinum(II) complexes. Angew Chem, Int Ed 51(45):11263; (c) Mitra K, Gautam S, Kondaiah P, Chakravarty AR (2015) The cis-diammineplatinum(II) complex of curcumin: a dual action DNA crosslinking and photochemotherapeutic agent. Angew Chem, Int Ed 54(47):13989; (d) Mitra K, Lyons CE, Hartman MCT (2018) A platinum(II) complex of heptamethine cyanine for photoenhanced cytotoxicity and cellular imaging in near-IR light. Angew Chem, Int Ed 57(32):10263; (e) Shi H, Clarkson GJ, Sadler PJ (2019) Dual action photosensitive platinum(II) anticancer prodrugs with photoreleasable azide ligands. Inorg Chim Acta 489:230; (f) Liu D, Ma J, Zhou W, He W, Guo Z (2012) Synthesis and photoactivity of a Pt(II) complex based on an o-nitrobenzyl-derived ligand. Inorg Chim Acta 393:198; (g) Ciesienski KL, Hyman LM, Yang DT, Haas KL, Dickens MG, Holbrook RJ, Franz KJ (2010) A photo-caged platinum(II) complex that increases cytotoxicity upon light activation. Eur J Inorg Chem 2010(15):2224; (h) Presa A, Vázquez G, Barrios LA, Roubeau O, Korrodi-Gregório L, Pérez-Tomás R, Gamez P (2018) Photoactivation of the cytotoxic properties of platinum(II) complexes through ligand photoswitching. Inorg Chem 57(7):4009; (i) Presa A, Brissos RF, Caballero AB, Borilovic I, Korrodi-Gregório L, Pérez-Tomás R, Roubeau O, Gamez P (2015) Photoswitching the cytotoxic properties of platinum(II) compounds. Angew Chem Int Ed 54(15):4561

    Google Scholar 

  186. (a) Zou T, Lok C, Funga YME, Che CM (2013) Luminescent Organoplatinum(II) complexes containing bis(N-heterocyclic carbene) ligands selectively target the endoplasmic reticulum and induce potent photo-toxicity. Chem Commun 49(47):5423; (b) Naik A, Rubbiani R, Gasser G, Spingler B (2014) Visible-light-induced annihilation of tumor cells with platinum-porphyrin conjugates. Angew Chem, Int Ed 53(27):6938

    Google Scholar 

  187. Bednarski PJ, Mackay FS, Sadler PJ (2007) Photoactivatable platinum complexes. Anti-Can. Agents. Med Chem 7(1):75

    Google Scholar 

  188. Naik A, Rubbiani R, Gasser G, Spingler B (2014) Visible-light-induced annihilation of tumor cells with platinum-porphyrin conjugates. Angew Chem Int Ed Engl 53(27):6938

    Google Scholar 

  189. Tsai JL-L, Zou T, Liu J, Chen T, Chan AO-Y, Yang C, Lok C-N, Che C-M (2015) Luminescent platinum(II) complexes with self-assembly and anti-cancer properties: hydrogel, pH dependent emission color and sustained-release properties under physiological conditions. Chem Sci 6(2015):3823

    Google Scholar 

  190. Frik M, Jiménez J, Vasilevski V, Carreira M, de Almeida A, Gascón E, Benoit F, Sanaú M, Casini A, Contel M (2014) Luminescent iminophosphorane gold, palladium and platinum complexes as potential anticancer agents. Inorg Chem Front 1:231

    Google Scholar 

  191. Zou T, Lok C-N, Fung YME, Che C-M (2013) Luminescent organoplatinum(II) complexes containing bis(N-heterocyclic carbene) ligands selectively target the endoplasmic reticulum and induce potent photo-toxicity. Chem Commun 49(47):5423

    Google Scholar 

  192. (a) Chakravarty R, Hong H, Cai W (2014) Positron emission tomography image-guided drug delivery: current status and future perspectives. Mol Pharm 11(11):3777; (b) Chakravarty R, Hong H, Cai W (2015) Image-guided drug delivery with single-photon emission computed tomography: a review of literature. Curr Drug Targets 16(6):592

    Google Scholar 

  193. (a) Song Y, Suntharalingam K, Yeung JS, Royzen M, Lippard SJ (2013) Synthesis and characterization of Pt(IV) fluorescein conjugates to investigate Pt(IV) intracellular transformations. Bioconjug Chem 24(10):1733; (b) Montagner D, Yap SQ, Ang WH (2013) A fluorescent probe for investigating the activation of anticancer platinum(IV) prodrugs based on the cisplatin scaffold. Angew Chem Int Ed 52(45):11785; (c) Leblond F, Davis SC, Valdés PA, Pogue BW (2010) Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. J Photochem Photobiol B 98(1):77

    Google Scholar 

  194. (a) Sathekge M, Wagener J, Smith SV, Soni N, Painter BM, Zinn C, de Wiele CV, D’Asseler Y, Perkins G, Zeevaart JR (2013) Biodistribution and dosimetry of 195mPt-cisplatin in normal volunteers. Nuklearmedizin 52(06):222; (b) Buckley SE, Ali PA, Evans CJ, El-Harkawi AM (2006) Gamma camera scintigraphy of tumours using 195mPt-cisplatin. Phys Med Biol 51(5):1325

    Google Scholar 

  195. (a) Firestone RB (1998) Table of isotopes. Wiley Sons Inc; (b) U. Reus, W. Westmeier (1983) Catalog of gamma rays from radioactive decay. Atomic Data Nuclear Data Tables 29:1–192

    Google Scholar 

  196. Dykiy MP, Dovbnya AN, Lyashko YV, Medvedeva EP, Medvedev DV, Uvarov VL (2007) Photonuclear production of 193m,195mPt and synthesis of radioactive cisplatin. J Label Comp Radiopharm 50(5–6):480

    Google Scholar 

  197. Buckley SE, Ali PA, Evans CJ, El-Sharkawi AM (2006) Gamma camera scintigraphy of tumours using (195m)Pt-cisplatin. Phys Med Biol 51(5):1325

    Google Scholar 

  198. Howell RW, Kassis AI, Adelstein SJ, Rao DV, Wright HA, Hamm RN, Turner JE, Sastry KSR (1994) Radiotoxicity of platinum-195m-labeled trans-platinum(II) in mammalian cells. Radiat Res 140(1):55

    Google Scholar 

  199. Kawai K, Tanaka Y, Nakano Y, Ehrlich W, Akaboshi M (1995) Synthesis of platinum-195m radiolabelled cis-diammine(1,1-cyclobutanedicarboxylato) platinum(II) of high radionuclidic purity. J Label Compds Radiopharm 36(1):65

    Google Scholar 

  200. Sharma KS, Vimalnath KV, Phadnis PP, Chakravarty R, Chakraborty S, Dash A, Vatsa RK (2021) Facile synthesis of a Pt(IV) prodrug of cisplatin and its intrinsically 195mPt labeled analog: a step closer to cancer theranostic. Ind J Nucl Med 36(2)(2021):140

    Google Scholar 

  201. Suntharalingam K, Song Y, Lippard SJ (2014) Conjugation of vitamin E analog α-TOS to Pt(IV) complexes for dual-targeting anticancer therapy. Chem Commun 50:2465

    Google Scholar 

  202. Montagner D, Tolan D, Andriollo E, Gandin V, Marzano C (2018) A Pt(IV) prodrug combining chlorambucil and cisplatin: a dual-acting weapon for targeting DNA in cancer cells. Int J Mol Sci 19(12), Article No. 3775:1–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad P. Phadnis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phadnis, P.P. (2021). Synthesis and Development of Platinum-Based Anticancer Drugs. In: Tyagi, A.K., Ningthoujam, R.S. (eds) Handbook on Synthesis Strategies for Advanced Materials. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-1892-5_14

Download citation

Publish with us

Policies and ethics