Skip to main content

Synthesis Strategies for Organoselenium Compounds and Their Potential Applications in Human Life

  • Chapter
  • First Online:
Handbook on Synthesis Strategies for Advanced Materials

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

This article describes the prime role of selenium (Se) and its compounds in mammalian biochemical systems, performing diverse functions like maintenance of health through various selenoenzymes, diagnostic, therapeutic functions and as targeted drug delivery system. The role of inorganic selenium compounds in food chain and in nourishing human health is also briefed. The deficiency, as well as excess selenium, leads to detrimental effects on health. Hence, the essential dose required and its food sources or supplements have been described. Its role in materials science serving for facilitating human life through various electronic devices, solar cells, H2 evolution catalysts, etc. has also been described briefly. To harness the full potential of such a useful element, what we need is a real compound, material or its formulation in hand with utmost purity. As the properties of compounds are governed by their structures, the literature knowledge helps us to design the selenium compounds appropriately for desired applications. The present article underlines the importance of design, synthesis, purification and characterization of the selenium compounds. In view of this, various classes of selenium compounds and their classical and newly reported synthesis strategies have been described. In the later part of the chapter, the prominent characterization and estimation methods for selenium species have also been described briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H (2020) Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582:289; (b) Sies H, Parnham MJ (2020) Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radic Biol Med 156:107; (c) Yan D, Wang G, Xiong F, Sun W-Y, Shi Z, Lu Y, Li S, Zhao J (2018) A selenium-catalysed para-amination of phenols. Nature Commun 9:4293 (1–9); (d) Mugesh G, du Mont W-W, Sies H (2001) Chemistry of biologically important synthetic organoselenium compounds. Chem Rev 101(7):2125; (e) Nogueira CW, Zeni G, Rocha JBT (2004) Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 104(12):6255; (f) Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T (2009) Green chemistry with selenium reagents: development of efficient catalytic reactions. Angew Chem Int Ed 48(45):8409; (g) Kanatzidis MG, Huang S-P (1994) Coordination chemistry of heavy polychalcogenide ligands. Coord Chem Rev 130(1–2):509; (h) Bryce MR (1991) Recent progress on conducting organic charge-transfer salts. Chem Soc Rev 20:355; (i) Dutton JL, Ragogna PJ (2011) Recent Developments in the Lewis Acidic Chemistry of Selenium and Tellurium Halides and Pseudo-Halides. In: Woollins JD, Laitinen RS (eds) Selenium and tellurium chemistry. From small molecules to biomolecules and materials. Springer, Heidelberg, p 179; (j) Wirth T (ed) Organoselenium chemistry - modern development in organic synthesis. In: Topics in current chemistry, vol 208. Springer, Berlin; (k) Xu H, Cao W, Zhang X (2013) Selenium-Containing polymers: promising biomaterials for controlled release and enzyme mimics. Acc Chem Res 46(7):1647; (l) Mukherjee AJ, Zade SS, Singh HB, Sunoj RB (2010) Organoselenium chemistry: role of intramolecular interactions. Chem Rev 110(7):4357; (m) Kieliszek M, Lipinski B (2020) Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses 143:109878 (1–2); (n) Stadtman TC (1974) Selenium biochemistry: proteins containing selenium are essential components of certain bacterial and mammalian enzyme systems. Science 183:915; (o) Gudkov SV, Shafeev GA, Glinushkin AP, Shkirin AV, Barmina EV, Rakov II, Simakin AV, Kislov AV, Astashev ME, Vodeneev VA, Kalinitchenko VP (2020) Production and use of selenium nanoparticles as fertilizers. ACS Omega 5(28):17767; (p) Chen L, Yang F, Xu J, Hu Y, Hu Q, Zhang Y, Pan G (2002) Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on selenium content of rice. J Agric Food Chem 50(18):5128; (q) Hassan W, Oliveira CS, Noreen H, Kamdem JP, Nogueira CW, Rocha JBT (2016) Organoselenium compounds as potential neuroprotective therapeutic agents. Curr Org Chem 20(2):218; (r) Stone CA, Kawai K, Kupka R, Fawzi WW (2010) Role of selenium in Hiv infection. Nutrit Rev 68(11):671; (s) Dworkin BM (1994) Selenium deficiency in HIV infection and the acquired immunodeficiency syndrome (AIDS). Chem-Biol Interact 91(2–3):181; (t) Iwaoka M, Arai K (2013) From sulfur to selenium. A new research arena in chemical biology and biological chemistry. Curr Chem Biol 7(1):2; (u) Barbosa NV, Nogueira CW, Nogara PA, de Bem AF, Aschner M, Rocha JBT (2017) Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Metallomics 9:1703; (v) Occai BK, Hassan W, Rocha JBT (2018) Gender-based behavioral and biochemical effects of diphenyl diselenide in Drosophila melanogaster. Chem-Biol Interact 279:196; (w) Singh N, Halliday AC, Thomas JM, Kuznetsova O, Baldwin R, Woon ECY, Aley PK, Antoniadou I, Sharp T, Vasudevan SR, Churchill GC (2013) A safe lithium mimetic for bipolar disorder. Nat Commun 4:1332 (1–14); (x) Kil J, Pierce C, Tran H, Gu R, Lynch ED (2007) Ebselen treatment reduces noise induced hearing loss via the mimicry and induction of glutathione peroxidase. Hear Res 226(1–2):44; (y) Tieu C, Campbell KC (2013) Current pharmacologic otoprotective agents in or approaching clinical trials: how they elucidate mechanisms of noise-induced hearing loss. Otolaryngology 3(1):130; (z) Hammill TL, Campbell KC (2018) Protection for medication-induced hearing loss: the state of the science. Int J Audiol 57(sup4):S87

    Google Scholar 

  2. (a) Cui Y, Zhou Z, Li T, Wang K, Li J, Wei Z (2019) Metal chalcogenides: versatile crystal structures and (opto)electronic applications of the 2D metal nono-, di-, and tri-chalcogenide nanosheets. Adv Funct Mater 29(24):1970161; (b) Zhang T, Zhang L, Yin Y, Jiang C, Li S, Zhu C, Chen T (2019) A thiol-amine mixture for metal oxide towards device quality metal chalcogenides. Sci China Mater 62(6):899; (c) Theerthagiri J, Karuppasamy K, Durai G, Rana AHS, Arunachalam P, Sangeetha K, Kuppusami P, Kim H-S (2018) Recent advances in metal chalcogenides (MX; X = S, Se) nanostructures for electrochemical supercapacitor applications: a brief review. Nanomaterials 8:256 (1–28); (d) Joe J, Yang H, Bae C, Shin H (2019) Metal chalcogenides on silicon photocathodes for efficient water splitting: a mini overview. Catalysts 9:149 (1–37); (e) Freitas JN, Gonçalves AS, Nogueira AF (2014) A comprehensive review of the application of chalcogenide nanoparticles in polymer solar cells. Nanoscale 6:6371

    Google Scholar 

  3. (a) Phadnis PP, Mugesh G (2005) Internally stabilized selenocysteine derivatives: syntheses, 77Se NMR and biomimetic studies. Org Biomol Chem 3:2476; (b) Mugesh G, Singh HB (2002) Heteroatom-directed aromatic lithiation: A versatile route to the synthesis of organochalcogen (Se, Te) compounds. Acc Chem Res 35:226

    Google Scholar 

  4. (a) Hua G, Woollins JD (2009) Formation and reactivity of phosphorus–selenium rings. Angew Chem Int Ed 48(8):1368; (b) Crich D, Grant D, Krishnamurthy V, Patel M (2007) Catalysis of stannane-mediated radical chain reactions by benzeneselenol. Acc Chem Res 40(6):453; (c) Boyle PD, Godfrey SM (2001) The reactions of sulfur and selenium donor molecules with dihalogens and interhalogens. Coord Chem Rev 223(1):265; (d) Mathur P (1997) Chalcogen-bridged metal-carbonyl complexes. Adv Organomet Chem 41:243; (e) Kanatzidis MG, Huang S-P (1994) Coordination chemistry of heavy polychalcogenide ligands. Coord Chem Rev 130(1–2):509; (f) Rocha JBT, Piccoli BC, Oliveira CS (2017) Biological and chemical interest in selenium: a brief historical account. Arkivoc, part II 457

    Google Scholar 

  5. Berzelius JJ (1818) Undersökning af en ny Mineral-kropp, funnen i de orenare sorterna af det vid Fahlun tillverkade svaflet. Afhandl Fys Kemi Mineral 6:42

    Google Scholar 

  6. (a) Jones CO (1909) The physiological effects of selenium compounds with relation to their action on glycogen and sugar derivatives in the tissues. Biochem J 4:405; (b) Chabrie C, Lapicque L (1890) Sur l’action physiologique l’acide selenieux. Comp Rend Acad Sci 110:152; (c) Olson OE (1986) Selenium toxicity in animals with emphasis on man. J Am Coll Toxicol 5(1):45

    Google Scholar 

  7. (a) Schwarz K, Foltz CM (1957) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 79:3292; (b) Muth OH, Oldfield JE, Remmert LF, Schubert JR (1958) Effects of selenium and vitamin E on white muscle disease. Science 128:1090

    Google Scholar 

  8. Turner DC, Stadtman TC (1973) Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein. Arch Biochem Biophys 154:366

    Article  CAS  Google Scholar 

  9. (a) Flohé L, Günzler EA, Schock HH (1973) Glutathione peroxidase: a selenoenzyme. FEBS Lett 32:132; (b) Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588

    Google Scholar 

  10. (a) Böck A (1994) Selenium proteins containing selenocysteine. In: King RB (ed) Encyclopedia of inorganic chemistry, vol 8. Wiley, Chichester, p 3700; (b) Flohé L, Andreesen JR, Brigelius-Flohé R, Maiorino M, Ursini F (2000) Selenium, the element of the moon, in life on earth. IUBMB Life 49:411

    Google Scholar 

  11. (a) Zinoni F, Birkmann A, Stadtman TC, Bock A (1986) Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc Natl Acad Sci USA 83(13):4650; (b) Johansson L, Gafvelin G, Arnér ESJ (2005) Selenocysteine in proteins-properties and biotechnological use. BBA-Gen Subjects 1726(1):1; (c) Garcin E, Vernede X, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC (1999) The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure 7(5):557

    Google Scholar 

  12. Roy GP, Sarma BK, Phadnis PP, Mugesh G (2005) Selenium-containing enzymes in mammals: chemical perspectives. J Chem Sci 117(4):287

    Article  CAS  Google Scholar 

  13. (a) Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179(4073):588; (b) Biterova EI, Turanov AA, Gladyshev VN, Barycki JJ (2005) Crystal structures of oxidized and reduced mitochondrial thioredoxin reductase provide molecular details of the reaction mechanism. Proc Nat Acad Sci, USA 102(42):15018; (c) Sarma BK, Mugesh G (2008) Thiolcofactors for selenoenzymes and their synthetic mimics. Org Biomol Chem 6(6):965; (d) Benhar M (2018) Roles of mammalian glutathione peroxidase and thioredoxin reductase enzymes in the cellular response to nitrosative stress. Free Radic Biol Med 127:160; (e) St Germain DL, Galton VA (1997) The deiodinase family of selenoproteins. Thyroid 7(4):655; (f) St. Germain DL (2001) Selenium, deiodinases and endocrine function. In: Hatfield DL (eds) Selenium. Springer, Boston, MA (Print ISBN:978-1-4613-5639-4); (g) Mustacich D, Powis G (2000) Thioredoxin reductase. Biochem J 346(Pt 1):1; (h) Jr. Williams H, Arscott LD, Muller S, Lennon BW, Ludwig ML, Wang P-F, Veine DM, Becker K, Schirmer RH (2000) Thioredoxin reductase; Two modes of catalysis have evolved. Eur J Biochem 267(20):6110; (i) Berry MJ, Banu L, Larsen PR (1991) Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature 349(6308):438; (j) Köhrle J (2002) Iodothyronine deiodinases. Methods Enzymol 347:125

    Google Scholar 

  14. (a) Müller A, Cadenas E, Graf P, Sies H (1984) A novel biologically active seleno-organic compound--I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem Pharmacol 33(20):3235; (b) Sies H (1993) Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Radic Biol Med 14(3):313; (c) Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91(3):S31

    Google Scholar 

  15. (a) Ye S-f, Yang Y, Wu L, Ma W-w, Zeng H-h (2017) Ethaselen: a novel organoselenium anticancer agent targeting thioredoxin reductase 1 reverses cisplatin resistance in drug-resistant K562 cells by inducing apoptosis. J Zhejiang Univ Sci B 18(5):373; (b) Shi C, Yu L, Yang F, Yan J, Zeng H (2003) A novel organoselenium compound induces cell cycle arrest and apoptosis in prostate cancer cell lines. Biochem Biophys Res Commun 309(3):578; (c) Wang L, Yang Z, Fu J, Yin H, Xiong K, Tan Q, Jin H, Li J, Wang T, Tang W, Yin J, Cai G, Liu M, Kehr S, Becker K, Zeng H (2012) Ethaselen: a potent mammalian thioredoxin reductase 1 inhibitor and novel organoselenium anticancer agent. Free Radic Biol Med 52(5):898

    Google Scholar 

  16. (a) Geoffrion LD, Hesabizadeh T, Medina-Cruz D, Kusper M, Taylor P, Vernet-Crua A, Chen J, Ajo A, Webster TJ, Guisbiers G (2020) Naked Selenium Nanoparticles for Antibacterial and Anticancer Treatments. ACS Omega 5(6):2660; (b) Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C (2019) Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 111:802

    Google Scholar 

  17. (a) Maiyo F, Singh M (2017) Selenium nanoparticles: potential in cancer gene and drug delivery. Nanomedicine (Lond) 12(9):1075; (b) Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng Q, Baron M, Melcova M, Opatrilova R, Zidkova J, Bjørklund G, Sochor J, Kizek R (2018) Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomed 13:2107; (c) Liu W, Li X, Wong YS, Zheng W, Zhang Y, Cao W, Chen T (2012) Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS Nano 6(8):6578

    Google Scholar 

  18. (a) Koizumi M, Endo K, Watanabe Y, Saga T, Sakahara H, Konishi J, Yamamuro T, Toyama S (1989) Pharmacokinetics of internally labeled monoclonal antibodies as a gold standard: comparison of biodistribution of 75Se-, 111In-, and 125I-labeled monoclonal antibodies in osteogenic sarcoma xenografts in nude mice. Cancer Res 49(7):1752; (b) Glass RS, Singh WP, Jung W, Veres Z, Scholz TD, Stadtman T (1993) Monoselenophosphate: synthesis, characterization, and identity with the prokaryotic biological selenium donor, compound SePX. Biochemistry 32(47):12555

    Google Scholar 

  19. (a) Blau M, Bender MA (1962) Se76-selenomethionine for visualization of the pancreas by isotope scanning. Radiology 78(6):974; (b) McCarthy DM, Brown P, Melmed RN, Agnew JE, Bouchier IAD (1972) 75Se-selenomethionine scanning in the diagnosis of tumours of the pancreas and adjacent viscera: the use of the test and its impact on survival. Gut 13(2):75; (c) Goto R, Unno K, Takeda A, Okada S, Tamemasa O (1987) Tumor accumulation of D-selenomethionine-Se-75 in tumor-bearing mice. J Pharmacobiodyn 10(9):456

    Google Scholar 

  20. (a) Combs Jr F (1988) Selenium in Foods. Adv Food Res 32:85; (b) Cuderman P, Kreft I, Germ M, Kovačevič M, Stibilj V (2008) Selenium species in selenium-enriched and drought-exposed potatoes. J Agric Food Chem 56(19):9114; (c) A nutrition guide for men with prostate cancer, BC Cancer Agency, 2nd Ed (2014) (ISBN-10-1-896624-24-3); (d) Sager M (2006) Selenium in agriculture, food, and nutrition. Pure Appl Chem 78(1):111; (e) Mabeyo PE, Manoko MLK, Gruhonjic A, Fitzpatrick PA, Landberg G, Erdélyi M, Nyandoro SS (2015) Selenium accumulating leafy vegetables are a potential source of functional foods. Int J Food Sci 2015:Article ID 549676 (1–8); (f) Yang R, Liu Y, Zhou Z (2017) Selenium and selenoproteins, from structure, function to food resource and nutrition. Food Sci Technol Res 23(3):363

    Google Scholar 

  21. (a) Thomson CD (2004) Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr 58(3):391; (b) Slencu BG, Ciobanu C, Cuciureanu R (2012) Selenium content in foodstuffs and its nutritional requirement for humans. Clujul Med 85(2):139; (c) Levander OA, Burk RF (2006) Update of human dietary standards for selenium. In: Hatfield DL, Berry MJ, Gladyshev VN (eds) Selenium - its molecular biology and role in human health. Springer, New York, p 399; (d) Nagabhushanam K, Majeed M (2007) Selenium compounds in medicine and nutrition. Chimica Oggi 25(5):36

    Google Scholar 

  22. (a) Shor-Posner G, Miguez M-J, Pineda LM, Rodriguez A, Ruiz P, Castillo G, Burbano X, Lecusay R, Baum M (2002) Impact of selenium status on the pathogenesis of mycobacterial disease in HIV-1-infected drug users during the era of highly active antiretroviral therapy. J Acquir Immune Defic Syndr 29(2):169; (b) Fordyce FM (2013) Selenium deficiency and toxicity in the environment. In: Selinus O (ed) Essentials of medical geology. Springer, Dordrecht, p 375; (c) Reich HJ, Hondal RJ (2016) Why nature chose selenium. ACS Chem Biol 11:821

    Google Scholar 

  23. (a) Nuttall KL (2006) Evaluating selenium poisoning. Ann Clin Lab Sci 36(4):409; (b) MacFarquhar JK, Broussard DL, Melstrom P, Hutchinson R, Wolkin A, Martin C, Burk RF, Dunn JR, Green AL, Hammond R, Schaffner W, Jones TF (2010) Acute selenium toxicity associated with a dietary supplement. Arch Intern Med 170(3):256

    Google Scholar 

  24. (a) Tinggi U (2003) Essentiality and toxicity of selenium and its status in Australia: a review. Toxicol Lett 137(1–2):103; (b) Davis TZ, Stegelmeier BL, Hall JO (2014) Analysis in horse hair as a means of evaluating selenium toxicoses and long-term exposures. J Agric Food Chem 62(30):7393

    Google Scholar 

  25. (a) Schellmann B, Raithel HJ, Schaller KH (1986) Acute fatal selenium poisoning. Toxicological and occupational medical aspects. Arch Toxicol 59(1):61; (b)Koppel C, Baudisch H, Beyer KH, Kloppel I, Schneider V (1986) Fatal poisoning with selenium dioxide. J Toxicol Clin Toxicol 24(1):21; (c) MacFarquhar JK, Broussard DL, Melstrom P, Hutchinson R, Wolkin A, Martin C, Burk RF, Dunn JR, Green AL, Hammond R, Schaffner W, Jones TF (2010) Acute selenium toxicity associated with a dietary supplement. Arch Intern Med 170(3):256; (d) Aldosary BM, Sutter ME, Schwartz M, Morgan BW (2011) Case series of selenium toxicity from a nutritional supplement. Clin Toxicol 50(1):57–64; (e) Painter EP (1941) The chemistry and toxicity of selenium compounds, with special reference to the selenium problem. Chem Rev 28(2):179

    Google Scholar 

  26. (a) Lin H, Zhu Q, Shu D, Lin D, Xu J, Huang X, Shi W, Xi X, Wang J, Gao L (2019) Growth of environmentally stable transition metal selenide films. Nat Mater 18(6):602; (b) Luo M, Yu H, Hu F, Liu T, Cheng X, Zheng R, Bai Y, Shui M, Shu J (2020) Metal selenides for high performance sodium ion batteries. Chem Eng J 380:122557; (c) Ali Z, Asif M, Zhang T, Huang X, Hou Y (2019) General approach to produce nanostructured binary transition metal selenides as high-performance sodium ion battery anodesl. General Small 15(33):1901995; (d) Hoover GC, Seferos DS (2019) Photoactivity and optical applications of organic materials containing selenium and tellurium. Chem Sci 10(40):9182; (e) Chen S, Ma G, Wang Q, Sun S, Hisatomi T, Higashi T, Wang Z, Nakabayashi M, Shibata N, Pan Z, Hayashi T, Minegishi T, Takata T, Domen K (2019) Metal selenide photocatalysts for visible-light-driven Z-scheme pure water splitting. J Mater Chem A 7:7415; (f) Zhang R, Cho S, Lim DG, Hu X, Stach EA, Handwerker CA, Agrawal R (2016) Metal-metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices chem commun 52(28):5007; (g) Kagkoura A, Skaltsas T, Tagmatarchis N (2017) Transition metal chalcogenides/graphene ensembles for light induced energy applications. Chem Eur J 23(53):12967

    Google Scholar 

  27. (a) Lipinski B (2019) Redox-active selenium in health and disease: a conceptual review. Mini-Rev Med Chem 19(9):720; (b) Mohammod TGM, Misbahudd M (2018) In silico design of a drug from the compounds that are suggestive in the treatment of arsenicosis using molecular docking. J Comput Methods Mol Des 8(3):10; (c) Mezey PG (2000) Computer aided drug design: some fundamental aspects. J Mol Model 6(2):150–157; (d) Thakur M, Chandan N (2012) Int J Res Pharm Biomed Sci 3:2229; (e) Parikesit AA (2018) Introductory chapter: the contribution of bioinformatics as blueprint lead for drug design. In: Molecular insight of drug design (IntechOpen) (Chap. 1); (f) Liu R, Li X, Lama KS (2017) Combinatorial chemistry in drug discovery. Curr Opin Chem Biol 38:117; (g) Kennedy JP, Williams L, Bridges TM, Daniels RN, Weaver D, Lindsley CW (2008) Application of combinatorial chemistry science on modern drug discovery. J Comb Chem 10(3):345

    Google Scholar 

  28. (a) Löwig CJ (1836) “Ueber schwefelwasserstoff - und selenwasserstoffäther” (About hydrogen sulfide and selenium hydrogen ether). Annalen der Physik 37:550; (b) Rathke B (1869) Ann Chem 152:211

    Google Scholar 

  29. Wöhler F, Siemens C (1847) Ueber das Selenmercaptan. Ann Chem 61:360

    Article  Google Scholar 

  30. (a) Haygarth PM (1994) Global importance and global cycling of selenium. In: Frankenberger Jr WT, Benson S (eds) Selenium in the environment. Marcel Dekker Inc., New York; (b) Jacob C, Giles GI, Giles NM, Sies H (2003) Sulfur and selenium: the role of oxidation state in protein structure and function. Angew Chem Int Ed 42(39):4742; (c) Maroney MJ, Hondal RJ (2018) Selenium versus sulfur: reversibility of chemical reactions and resistance to permanent oxidation in proteins and nucleic acids. Free Radic Biol Med 127:228; (d) Ji S, Xia J, Xu H (2016) Dynamic chemistry of selenium: Se–N and Se–Se dynamic covalent bonds in polymeric systems. ACS Macro Lett 5:78; (e) Martens DA (2003) Selenium. In: Stewart BA, Howell T (Ed) Encyclopedia of Water Science, Marcel Dekker Inc., p 840

    Google Scholar 

  31. Plano D, Lizarraga E, Font M, Palop JA, Sanmartín C (2009) Thermal stability and decomposition of sulphur and selenium compounds. J Therm Anal Calorim 98(2):559

    Article  CAS  Google Scholar 

  32. (a) Kildahl NK (1995) Bond energy data summarized. J Chem Educ 72(5):423; (b) Ji S, Xia J, Xu H (2016) Dynamic chemistry of selenium: Se–N and Se–Se dynamic covalent bonds in polymeric systems. ACS Macro Lett 5(1):78

    Google Scholar 

  33. (a) Winkel LHE, Johnson CA, Lenz M, Grundl T, Leupin OX, Amini M, Charlet L (1983) Environmental selenium research: from microscopic processes to global understanding. Environ Sci Technol 46(2):571; (b) Jukes TH (1983) Selenium, an “essential poison”. J Appl Biochem 5(4–5):233; (c) Alexander J (2015) Selenium. Handbook on the toxicology of metals 4E (Chap. 52). Elsevier B.V., p 1175

    Google Scholar 

  34. Toxicological Profile for Selenium. In: U.S. Department of Health and Human Services, (2003)

    Google Scholar 

  35. (a) Acute Exposure Guidelines Levels for selected airborne Chemicals, Volume 16; National Research Council of the National Academies, The National Academies Press, Washington D.C. (2014); (b) Cupp-Sutton KA, Ashby MT (2016) Biological chemistry of hydrogen selenide. Antioxidants 5(4):42 (1–18)

    Google Scholar 

  36. Foster DG (1928) Organic selenium compounds: the decomposition of some phenyl selenium halides. J Am Chem Soc 50:1184

    Article  Google Scholar 

  37. (a) Shimodaira S, Asano Y, Arai K, Iwaoka M (2017) Selenoglutathione diselenide: unique redox reactions in the GPx-like catalytic cycle and repairing of disulfide bonds in scrambled protein. Biochemistry 56(42):5644; (b) Lamoure M, Milne J (1989) The disproportionation of diselenium dichloride, Se2CI2, and diselenium dibromide, Se2Br2. Can J Chem 67:1936

    Google Scholar 

  38. (a) Chu YC, Marsh DG, Günther WHH (1975) Photochemistry of organochalcogen compounds. I. Photolysis of benzyl diselenide. J Am Chem Soc 97(17):4905; (b) Chen Y-W, Zhou X-L, Tong J, Truong Y, Belzile N (2005) Photochemical behavior of inorganic and organic selenium compounds in various aqueous solutions. Anal Chim Acta 545(2):149; (c) McCulla RD (2005) Photochemistry and internal eliminations of organosulfur and organoselenium compounds. Dissertation of PhD work, Iowa State University, ISA

    Google Scholar 

  39. Management of Hazardous Waste, Yale Environmental Health & Safety (2018)

    Google Scholar 

  40. Armour M-A (2003) Hazardous laboratory chemicals disposal guide, 3rd ed, ISBN 1-56670-567-3. CRC Press, FL

    Google Scholar 

  41. (a) Lenga RE (ed) (1988) The sigma-aldrich library of chemical safety data, 2nd ed (ISBN-10: 0941633160; ISBN-13: 978-0941633161), Aldrich Chemical Company, Milwaukee, WI; (b) Waste disposal Guide, Michigan State University (2009); (c) Disposal of laboratory wastes: requirements for chemical disposal to sinks and drains. Environmental Health and Safety Office Ball State University (2011)

    Google Scholar 

  42. (a) Sarma BK, Mugesh G (2009) Theoretical investigation on the effect of different nitrogen donors on intramolecular Se⋅⋅⋅N interactions. ChemPhysChem 10(17):3013; (b) Shimizu T, Enomoto M, Taka H, Kamigata N (1999) Optical resolution and configurational stability of selenoxides stabilized by intramolecular coordination. J Org Chem 64(22):8242; (c) Singh VP, Singh HB, Butcher RJ (2011) Synthesis of cyclic selenenate/seleninate esters stabilized by ortho-nitro coordination: their glutathione peroxidase-like activities. Synthesis Chem Asian J 6:1431

    Google Scholar 

  43. Phadnis PP, Mugesh G (2005) Internally stabilized selenocysteine derivatives: syntheses, 77Se NMR and biomimetic studies. Org Biomol Chem 3:2476–2481

    Article  CAS  Google Scholar 

  44. (a) Prabhu CP, Phadnis PP, Wadawale AP, Priyadarsini KI, Jain VK (2012) Synthesis, Synthesis, characterization, structures and antioxidant activity of nicotinoyl based organoselenium compounds. J Organomet Chem 713:42; (b) Phadnis PP, Kunwar A, Kumar M, Mishra R, Wadawale A, Priyadarsini KI, Jain VK (2017) Study of polymorphism in 2, 2′-diselenobis(3-pyridinol). J Organomet Chem 852:1; (c) Kunwar A, Patil A, Kumar S, Deshpande R, Gota V, Goda JS, Jain VK, Indira Priyadarsini K (2018) Toxicological safety evaluation of 3,3’-diselenodipropionic acid (DSePA), a pharmacologically important derivative of selenocystine. Regul Toxicol Pharmacol 99:159

    Google Scholar 

  45. (a) Azad GK, Tomar RS (2014) Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol Biol Rep 41(8):4865; (b) Bueno DC, Meinerz DF, Allebrandt J, Waczuk EP, dos Santos DB, Mariano DOC, Rocha JBT (2013) Cytotoxicity and genotoxicity evaluation of organochalcogens in human leucocytes: a comparative study between ebselen, diphenyl diselenide, and diphenyl ditelluride. BioMed Res Internat 2013:Article ID 537279, 1–6; (c) Gota V, Goda JS, Doshi K, Patil A, Sunderajan S, Kumar K, Varne M, Kunwar A, Jain VK, Priyadarshini KI (2016) Biodistribution and pharmacokinetic study of 3,3’ diseleno dipropionic acid (DSePA), a synthetic radioprotector, in mice. Eur J Drug Metab Pharmacokinet 41:839; (d) May HC, Yu J-J, Guentzel1 MN, Chambers JP, Cap AP, Arulanandam BP (2018) Repurposing auranofin, ebselen, and PX-12 as antimicrobial agents targeting the thioredoxin system. Front Microbiol 9:Article 336 (1–10)

    Google Scholar 

  46. Beld J, Woycechowsky KJ, Hilvert D (2007) Selenoglutathione: efficient oxidative protein folding by a diselenide. Biochemistry 46(18):5382

    Article  CAS  Google Scholar 

  47. (a) Pfeiffer W-D (2008) 1,3,4-Oxadiazines and 1,3,4-Thiadiazines. In: Comprehensive heterocyclic chemistry III, p 401; (b) Rosa RM, Roesler R, Braga AL, Saffi J, Henriques JAP (2007) Pharmacology and toxicology of diphenyl diselenide in several biological models. Braz J Med Biol Res 40(10):1287; (c) Jain VK (2017) An overview of organoselenium chemistry: from fundamentals to synthesis (Chap. 1). In: Jain VK, Priyadarsini KI (eds) Organoselenium Compounds in biology and medicine: synthesis, biological and therapeutic treatments, Print ISBN 978-1-78801-029-0

    Google Scholar 

  48. (a) Bhasin KK, Jain VK, Kumar H, Sharma S, Mehta SK, Singh J (2003) Preparation and characterization of methyl substituted 2,2′-dipyridyl diselenides, 2,2′-dipyridyl-ditellurides, and their derivatives. Synth Commun 33(6):977; (b) Jain VK (2019) Pyridyl and pyrimidyl chalcogenolates of coinage metals and their utility as molecular precursors for the preparation of metal chalcogenides. New J Chem 43:11034

    Google Scholar 

  49. (a) Thompson DP, Boudjouk P (1988) A convenient synthesis of alkali metal selenides and diselenides in tetrahydrofuran and the reactivity differences exhibited by these salts toward organic bromides. Effect of ultrasound. J Org Chem 53(9):2109; (b) Gladysz JA, Hornby JL, Garbe JE (1978) Convenient one-flask synthesis of dialkyl selenides and diselenides via lithium triethylborohydride reduction of Sex. J Org Chem 43(6):1204; (c) Krief A, Derock M (2002) Synthesis of diselenides and selenides from elemental selenium. Tetrahedron Lett 43:3083; (d) Krasowska D, Begini F, Santi C, Mangiavacchi F, Drabowicz J, Sancinetoa L (2019) Ultrasound-assisted synthesis of alkali metals diselenides (M2Se2) and their application for the gram-scale preparation of 2,2'-diselenobis(benzoic acid). Arkivoc II, 24; (e) Syper L, Mlochowski J (1988) Lithium diselenide in aprotic medium - a convenient reagent for synthesis of organic diselenides. Tetrahedron, 44(19):6119; (f) Bhasin KK, Singh N, Doomra S, Arora E, Ram G, Singh S, Nagpal Y, Mehta SK, Klapotke TM (2007) Regioselective synthesis of bis(2-halo-3-pyridyl) dichalcogenides (E = S, Se and Te): directed ortho-lithiation of 2-halopyridines. Bioinorg Chem Appl 2007:Article ID 69263 (1–9); (g) Li JQ, Bao WL, Lue P, Zhou X-J (1991) A convenient method for the preparation of dialkylditellurides and dialkyldiselenides. Synth Commun 21:799

    Google Scholar 

  50. Vafai M, Renson M (1966) Synthèse du Sélénopheno [2′, 3′: 5, 6] Benzo [B] Thiophène. Bull Soc Chim Belg 75:145

    Article  CAS  Google Scholar 

  51. Aravindhan S, Singh HB, Zeller M, Butcher RJ (2019) Synthesis of selenopeptides: an alternative way of incorporating selenocystine. Synthesis Amino Acids 51:661

    Google Scholar 

  52. Klayman DL, Griffin TS (1973) Reaction of selenium with sodium borohydride in protic solvents. A Facile Method for the introduction of selenium into organic molecules. J Am Chem Soc 95(1):197

    Article  CAS  Google Scholar 

  53. (a) Młochowski J, Syper L (2001) Sodium hydrogen selenide. In: Encyclopedia of reagents for organic synthesis; (b) Ishihara H, Sato S, Hirabayashi Y (1977) The synthesis and properties of diacyl selenides. Bull Chem Soc Jpn 50(11):3007; (c) Jensen KA, Nielsen PH (1966) Infrared spectra of thioamides and selenoamides. Acta Chem Scand 20:597

    Google Scholar 

  54. (a) Landry VK, Minoura M, Pang K, Buccella D, Kelly BV, Parkin G (2006) Synthesis and structural characterization of 1-mesityl-1,3-dihydro-imidazole-2-selone and bis(1-mesitylimidazol-2-yl)diselenide: experimental evidence that the selone is more stable than the selenol tautomer. J Am Chem Soc 128:12490; (b) Roy G, Nethaji M, Mugesh G (2004) Mugesh, Biomimetic studies on anti-thyroid drugs and thyroid hormone synthesis. J Am Chem Soc 126(9):2712; (c) Jayaram PN, Roy G, Mugesh G (2008) Effect of thione-thiol tautomerism on the inhibition of lactoperoxidase by anti-thyroid drugs and their analogues. J Chem Sci 120(1):143; (d) Roy G, Mugesh G (2005) Anti-thyroid drugs and thyroid hormone synthesis: effect of methimazole derivatives on peroxidase-catalyzed reactions. J Am Chem Soc 127(43):15207

    Google Scholar 

  55. (a) Bolm C, Kesselgruber M, Grenz A, Hermanns N, Hildebrand JP (2001) A novel ferrocenyl diselenide for the catalytic asymmetric aryl transfer to aldehydes. New J Chem 25:13; (b) Mugesh G, Panda A, Singh HB, Punekar NS, Butcher RJ (2001) Glutathione peroxidase-like antioxidant activity of diaryl diselenides: a mechanistic study. J Am Chem Soc 123(5):839; (c) Mugesh G, Singh HB (2002) Heteroatom-directed aromatic lithiation: a versatile route to the synthesis of organochalcogen (Se, Te) compounds. Acc Chem Res 35:226

    Google Scholar 

  56. Zade SS, Singh HB (2012) Synthesis of organoselenium compounds. PATAI’S Chemistry of Functional Groups, Online 2009–2012. Wiley. https://doi.org/10.1002/9780470682531.pat0706

  57. (a) Plano D, Baquedano Y, Moreno-Mateos D, Font M, Jiménez-Ruiz A, Antonio Palop J, Sanmartín C (2011) Selenocyanates and diselenides: a new class of potent antileishmanial agents. Eur J Med Chem 46(8):3315; (b) Kumar S, Tripathi SK, Singh HB, Wolmershäuser G (2004) Synthesis, reactivity, electrochemical and crystallographic studies of diferrocenoyl diselenide and ferrocenoyl selenides. J Organomet Chem 689:3046

    Google Scholar 

  58. (a) Phadnis PP, Kunwar A, Kumar M, Mishra R, Wadavale A, Priyadarsini KI, Jain VK (2017) Study of polymorphism in 2, 2′-diselenobis(3-pyridinol). J Organomet Chem 852:1; (b) Hodage AS, Prabhu CP, Phadnis PP, Wadawale A, Priyadarsini KI, Jain VK (2012) Synthesis, characterization, structures and GPx mimicking activity of pyridyl and pyrimidyl based organoselenium compounds. J Organomet Chem 720:19

    Google Scholar 

  59. Reich HJ, Cohen ML, Clark PS (1979) Reagents for synthesis of organoselenium compounds: diphenyl diselenide and benzeneselenenyl chloride. Org Synth 59:141; Collective 6:533

    Google Scholar 

  60. (a) Iwaoka M, Haraki C, Ooka R, Miyamoto M, Sugiyama A, Kohara Y, Isozumi N (2006) Synthesis of selenocystine derivatives from cystine by applying the transformation reaction from disulfides to diselenides. Tetrahedron Lett 47(23):3861; (b)Oae S, Togo H (1981) Facile conversions of aliphatic sulfonic acids, sulfinic acids, thiols, sulfonates, thiolsulfonates, and disulfides to the corresponding alkyl iodides by triphenylphosphine/iodine. Synthesis 371

    Google Scholar 

  61. Braga AL, Paixão MW, Lüdtke DS, Silveira CC, Rodrigues OED (2003) Synthesis of new chiral aliphatic amino diselenides and their application as catalysts for the enantioselective addition of diethylzinc to aldehydes. Org Lett 5(15):2635

    Article  CAS  Google Scholar 

  62. Li Z, Ke F, Deng H, Xu H, Xiang H, Zhou X (2013) Synthesis of disulfides and diselenides by copper-catalyzed coupling reactions in water. Org Biomol Chem 11:2943

    Article  CAS  Google Scholar 

  63. Singh D, Deobald AM, Camargo LRS, Tabarelli G, Rodrigues OED, Braga AL (2010) An efficient one-pot synthesis of symmetrical diselenides or ditellurides from halides with CuO nanopowder/Se0 or Te0/Base. Org Lett 12(15):3288

    Article  CAS  Google Scholar 

  64. Botteselle GV, Godoi M, Galetto FZ, Bettanin L, Singh D, Rodrigues OED, Braga AL (2012) Microwave-assisted one-pot synthesis of symmetrical diselenides, ditellurides and disulfides from organoyl iodides and elemental chalcogen catalyzed by CuO nanoparticles. J Mol Catal A: Chem 365:186

    Article  CAS  Google Scholar 

  65. Soleiman-Beigi M, Yavari I, Sadeghizadeh F (2015) The direct synthesis of symmetrical disulfides and diselenides by metal–organic framework MOF-199 as an efficient heterogenous catalyst. RSC Adv 5(106):87564

    Article  CAS  Google Scholar 

  66. Panduranga V, Prabhu G, Prabhu B, Panguluri NR, Sureshbabu VV (2016) Alternative protocol for the synthesis of symmetrical dibenzyl diselenides and disulfides. Synthesis 48(11):1711

    Article  CAS  Google Scholar 

  67. Kommula D, Li Q, Ning S, Liu W, Wang Q, Zhao ZK (2020) Iodine mediated synthesis of diaryl diselenides using SeO2 as a selenium source. Synth Commun 50(7):1026

    Article  CAS  Google Scholar 

  68. Joshaghani M, Khosropour AR, Jafary H, Mohammadpoor-Baltork I (2005) Mild and highly efficient preparation of symmetrical disulfides and diselenides using bipyridinum hydrobromide perbromide as a new oxidative reagent. Phosphorus Sulfur Silicon 180:117

    Article  CAS  Google Scholar 

  69. Tian F, Yu Z, Lu S (2004) Efficient reductive selenation of aromatic aldehydes to symmetrical diselenides with Se/CO/H2O under atmospheric pressure. J Org Chem 69, 13:4520

    Google Scholar 

  70. (a) Back TG, Moussa Z (2002) Remarkable activity of a novel cyclic seleninate ester as a glutathione peroxidase mimetic and its facile in situ generation from allyl 3-hydroxypropyl selenide. J Am Chem Soc 124:12104; (b) Back TG, Moussa Z (2003) Diselenides and allyl selenides as glutathione peroxidase mimetics. Remarkable activity of cyclic seleninates produced in situ by the oxidation of allyl omega-hydroxyalkyl selenides. J Am Chem Soc 125(44):13455; (c) Iwaoka M, Kumakura F (2008) Applications of water-soluble selenides and selenoxides to protein chemistry. Phosphorus, Sulfur Silicon 183:1009

    Google Scholar 

  71. (a) Arnault I, Auger J (2006) Seleno-compounds in garlic and onion. J Chromatography A, 1112:23; (b) Block E (1997) Organoselenium and organosulfur phytochemicals from genus allium plants (onion, garlic): relevance for cancer protection. In: Ohigashi H, Osawa T, Terao J, Watanabe S, Yoshikawa T (eds) Food factors for cancer prevention. Springer, Tokyo. Print ISBN: 978-4-431-67019-3

    Google Scholar 

  72. (a) Lyi SM, Heller LI, Rutzke M, Welch RM, Kochian LV, Li L (2005) Molecular and biochemical characterization of the selenocysteine se-methyltransferase gene and se-methylselenocysteine synthesis in broccoli. Plant Physiol 138(1):409; (b) Schrauzer GN (2000) Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutrit 130(7):1653; (c) Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:Article number: 1 (1–11); (d) El-Bayoumy K, Sinha R, Pinto JT, Rivlin RS (2006) Cancer chemoprevention by garlic and garlic-containing sulfur and selenium compounds. J Nutrit 136(3):864S

    Google Scholar 

  73. (a) Borchert A, Kalms J, Roth S, Rademacher M, Schmidt A, Holzhutter H-G, Kuhn H, Scheerer P (2018) Crystal structure and functional characterization of selenocysteine- containing glutathione peroxidase 4 suggests an alternative mechanism of peroxide reduction. Biochimica et Biophysica Acta (BBA) – Mol Cell Biol Lipids 1863(9):1095; (b) Schweizer U, Schlicker C, Braun D, Kohrle J, Steegborn C (2014) Crystal structure of mammalian selenocysteine-dependent iodothyronine deiodinase suggests a peroxiredoxin-like catalytic mechanism. Proc Natl Acad Sci U S A 111(29):10526; (c) Hondal RJ, Ruggles EL (2011) Differing views of the role of selenium in thioredoxin reductase. Amino Acids 41:73

    Google Scholar 

  74. (a) Kumar PV, Singh BG, Phadnis PP, Jain VK, Priyadarsini KI (2016) Effect of molecular interactions on electron-transfer and antioxidant activity of bis(alkanol)selenides: a radiation chemical study. Chem Eur J 22:1; (b) Singh BG, Kumar P, Phadnis P, Iwaok M, Priyadarsini KI (2019) Free radical induced selenoxide formation in isomeric organoselenium compounds: the effect of chemical structures on antioxidant activity. New J Chem 43:13357

    Google Scholar 

  75. (a) Arai K, Tashiro A, Osaka Y, Iwaoka M (2017) Glutathione peroxidase-like activity of amino-substituted water-soluble cyclic selenides: a shift of the major catalytic cycle in methanol. Molecules 22(3):354 (1–13); (b) Hodage AS, Phadnis PP, Wadawale A, Priyadarsini KI, Jain VK (2011) Synthesis, characterization and structures of 2-(3,5-dimethylpyrazol-1-yl)ethylseleno derivatives and their probable glutathione peroxidase (GPx) like activity. Org Biomol Chem 9:2992

    Google Scholar 

  76. (a) Khan MD, Revaprasadua N (2020) Metal-organic precursors for ternary and quaternary metal chalcogenide nanoparticles and thin films. Nanoscience 6:1–31. https://doi.org/10.1039/9781788017053-00001; eISBN: 978-1-78801-705-3; (b) Jain VK (2006) Synthesis and characterization of single-source molecular precursors for the preparation of metal chalcogenides. J Chem Sci 118:547; (c) Stuczynski SM, Brennan JG, Steigerwald ML (1989) Formation of metal-chalcogen bonds by the reaction of metal-alkyls with silyl chalcogenides. Inorg Chem 28(25):4431; (d) Kolay S, Wadawale A, Das D, Kisan HK, Sunoj RB, Jain VK (2013) Cyclopalladation of dimesityl selenide: synthesis, reactivity, structural characterization, isolation of an intermediate complex with C–H⋯Pd intra-molecular interaction and computational studies. Dalton Trans 42:10828

  77. (a) Krief A (1995) Selenium, comprehensive organometallic chemistry-II. In: Abel EW, Stone FGA, Wilkinson G (eds) Elsevier, Oxford, p 515; (b) Renson M (1987) The chemistry of organic selenium and tellurium compounds. In: Patai S, Rappoport Z (ed) Wiley, Chicheter; (c) Zade SS, Singh HB (2014) Synthesis of organoselenium compounds, the chemistry of organic selenium and tellurium compunds. In: Rappoport Z (ed) Wiley, p 1; (d) Milton MD, Khan S, Sigh JD, Mishra V, Khandelwal BL (2005) A facile access to chalcogen and dichalcogen bearing dialkylamines and diols. Tetrahedron Lett 46:755; (e) Panda A (2009) Chemistry of selena macrocycles. Coord Chem Rev 253:1056; (f) Levason W, Orchard SD, Reid G (2002) Recent developments in the chemistry of selenoethers and telluroethers. Coord Chem Rev 225(1–2):159

    Google Scholar 

  78. (a) Hodage AS, Prabhu CP, Phadnis PP, Wadawale A, Priyadarsini KI, Jain VK (2009) Synthesis, characterization, structures and GPx mimicking activity of pyridyl and pyrimidyl based organoselenium compounds. J Organomet Chem 720:19; (b) Bhalla A, Nagpal Y, Kumar R, Mehta SK, Bhasin KK, Bari SS (2009) Synthesis and characterization of novel pyridyl/naphthyl/(diphenyl)methylseleno substituted alkanoic acids: X-ray structure of 2-pyridylselenoethanoic acid, 2-naphthylselenoethanoic acid and 2-(diphenyl)methylselenoethanoic acid. J Organomet Chem 694:179

    Google Scholar 

  79. Ghavale N, Phadnis PP, Wadawale A, Jain VK (2011) Synthesis, structure and reactivity of a selenoxide derived from a bulky selenide: Bis(2,4,6-trimethylphenyl) selenoxide. Ind J Chem Sec A 50(1):22

    Google Scholar 

  80. (a) Bhasin KK, Singh RS, Kumar H, Mehta SK (2010) A one-flask synthesis and characterization of novel symmetrical pyridyl monoselenides and X-ray crystal structure of bis(5-bromo-2-pyridyl) selenide and bis(2-bromo-5-pyridyl) selenide. J Organomet Chem 695:648; (b) Zade SS, Panda S, Singh HB, Wolmershäuserb G (2005) Synthesis of diaryl selenides using the in situ reagent SeCls. Tetrahedron Lett 46:665

    Google Scholar 

  81. Lin HM, Tang Y, Li ZH, Liu KD, Yang J, Zhang YM (2012) A novel and efficient synthesis of selenide. ARKIVOC (viii) 146

    Google Scholar 

  82. (a) Zhang Y, Wu D, Weng Z (2017) Synthesis of 1,2,2-trifluorovinyl sulphides and selenides from trifluorovinylation of organic thiocyanates and selenocyanates. Org Chem Front 4:2226; (b) Huang Y, Chen R (2000) A novel synthesis of allyl selenides by reaction of an organosamarium reagent with alkyl selenocyanates. Synth Commun 30(2):377; (c) Greenberg B, Gould ES, Burlant Wm (1956) The reaction of aryllithium compounds with aryl selenocyanates. A new synthesis of unsymmetric diaryl selenides. J Am Chem Soc 78(16):4028

    Google Scholar 

  83. (a) Berlin S, Ericsson C, Engman L (2002) Construction of tetrahydrofuran-3-ones from readily available organochalcogen precursors via radical carbonylation/reductive cyclization. Org Lett 4:3; (b) Zade SS, Singh HB (2014) Synthesis of organoselenium compounds. In: Rappoport Z (ed) The chemistry of organic selenium and tellurium compounds. Wiley, p 1

    Google Scholar 

  84. Angeli A, Tanini D, Capperucci A, Supuran CT, Med ACS (2017) Synthesis of novel selenides bearing benzenesulfonamide moieties as carbonic anhydrase I, II, IV, VII, and IX inhibitors. Chem Lett 8(12):1213

    CAS  Google Scholar 

  85. Lisiak R, Młochowski J (2009) Selenium-nitrogen bond cleavage in selenazole ring system with grignard reagent: a convenient synthesis of unsymmetrically substituted selenides. Synth Commun 39(17):3141

    Article  CAS  Google Scholar 

  86. Liotta D (1984) New organoselenium methodology. Acc Chem Res 17:28

    Article  CAS  Google Scholar 

  87. Aboulkacem S, Naumann D, Tyrra W, Patenburg I (2012) 4-Tetrafluoropyridyl silver(I), AgC5F4N, in redox transmetalations with selenium and tellurium. Organometallics 31(4):1559

    Article  CAS  Google Scholar 

  88. Kumar RU, Reddy KHV, Satish G, Swapna K, Nageswar YVD (2016) Metal free synthesis of diaryl selenides using SeO2 as a selenium source. Tetrahedron Lett 57(37):4138

    Article  CAS  Google Scholar 

  89. Yu J-T, Guo H, Yi Y, Fei H, Jiang Y (2014) The chan–lam reaction of chalcogen elements leading to aryl chalcogenides. Adv Synth Catal 356(4):749

    Article  CAS  Google Scholar 

  90. Zhao X, Yu Z, Yan S, Wu S, Liu R, He W, Wang L (2005) Ruthenium(III) chloride catalyzed efficient synthesis of unsymmetrical diorganyl selenides via cleavage of dibenzyl and diphenyl diselenides in the presence of zinc. J Org Chem 70(18):7338

    Article  CAS  Google Scholar 

  91. Shibahara F, Kanai T, Yamaguchi E, Kamei A, Yamauchi T, Murai T (2013) Copper-catalyzed C-H bond direct chalcogenation of aromatic compounds leading to diaryl sulfides, selenides, and diselenides by using elemental sulfur and selenium as chalcogen sources under oxidative conditions. Chem Asian J 9(1):237

    Article  Google Scholar 

  92. Taniguchi N (2007) Convenient synthesis of unsymmetrical organochalcogenides using organoboronic acids with dichalcogenides via cleavage of the S-S, Se-Se, or Te-Te bond by a copper catalyst. J Org Chem 72(4):1241

    Article  CAS  Google Scholar 

  93. Singh D, Alberto EE, Rodrigues OED, Braga AL (2009) Eco-friendly cross-coupling of diaryl diselenides with aryl and alkyl bromides catalyzed by CuO nanopowder in ionic liquid. Green Chem 11:1521

    Article  CAS  Google Scholar 

  94. Cristau HJ, Chabaud B, Labaudiniere R, Christol H (1985) Synthesis of aryl phenyl and heteroaryl phenyl selenides by nickel(II)-catalyzed arylation of sodium benzeneselenolate. Organometallics 4(4):657

    Article  CAS  Google Scholar 

  95. Munbunjong W, Lee EH, Ngernmaneerat P, Kim SJ, Singh G, Chavasiri W, Jang DO (2009) Indium-mediated cleavage of diphenyl diselenide and diphenyl disulfide: efficient one-pot synthesis of unsymmetrical diorganyl selenides, sulfides, and selenoesters. Tetrahedron 65:2467

    Article  CAS  Google Scholar 

  96. Nishiyama Y, Tokunaga K, Sonoda N (1999) New synthetic method of diorganyl selenides: palladium-catalyzed reaction of PhSeSnBu3 with aryl and alkyl halides. Org Lett 1(11):1725

    Article  CAS  Google Scholar 

  97. Quell T, Mirion M, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR (2016) Solvent-dependent facile synthesis of diaryl selenides and biphenols employing selenium dioxide. ChemistryOPEN 5(2):115

    Article  CAS  Google Scholar 

  98. Kobiki Y, Kawaguchi S, Ohe T, Ogawa A (2013) Photoinduced synthesis of unsymmetrical diaryl selenides from triarylbismuthines and diaryl diselenides. Beilst J Org Chem 9:1141

    CAS  Google Scholar 

  99. (a ) Wu Z-P, Hilvert D (1989) Conversion of a protease into an acyl transferase: selenolsubtilisin. J Am Chem Soc 111:4513; (b) Wu Z-P, Hilvert D (1990) Selenosubtilisin as a glutathione peroxidase mimic. J Am Chem Soc 112(14):5647

    Google Scholar 

  100. (a) Krause RJ, Glocke SC, Sicuri AR, Ripp SL, Elfarra AA (2006) Oxidative metabolism of seleno-L-methionine to L-methionine selenoxide by flavin-containing monooxygenases. Chem Res Toxicol 19(12):1643; (b) Carroll L, Pattison DI, Fu S, Schiesser CH, Davies MJ, Hawkins CL (2017) Catalytic oxidant scavenging by selenium-containing compounds: Reduction of selenoxides and N-chloramines by thiols and redox enzymes. Selenosubtilisin as a glutathione peroxidase mimic. Redox Biol 12:872

    Google Scholar 

  101. (a) Arai K, Tashiro A, Osaka Y, Iwaoka M (2017) Glutathione peroxidase-like activity of amino-substituted water-soluble cyclic selenides: a shift of the major catalytic cycle in methanol. Molecules 22(3):354 (1–13); (b) Kumakura F, Mishra B, Priyadarsini KI, Iwaoka M (2010) A water-soluble cyclic selenide with enhanced glutathione peroxidase-like catalytic activities. Eur J Org Chem 440

    Google Scholar 

  102. (a) Iwaoka M, Kumakura F (2008) Applications of water-soluble selenides and selenoxides to protein chemistry. Phosphorus, Sulfur, Silicon 183:1009; (b) Shinozaki R, Iwaoka M (2017) Effects of metal ions, temperature, and a denaturant on the oxidative folding pathways of bovine α-lactalbumin. Int J Mol Sci 18:1996 (1–14); (c) Arai K, Noguchi M, Singh BG, Priyadarsini KI, Fujio K, Kubo Y, Takayama K, Ando S, Iwaoka M (2013) A water-soluble selenoxide reagent as a useful probe for the reactivity and folding of polythiol peptides. FEBS Open Bio 3:55; (d) Arai K, Iwaoka M (2019) Oxidative protein folding using trans-3,4-dihydroxyselenolane oxide. Methods Mol Biol 1967:229; (e) Arai K, Kumakurmy F, Iwaoka M (2012) Kinetic and thermodynamic analysis of the conformational folding process of SS-reduced bovine pancreatic ribonuclease a using a selenoxide reagent with high oxidizing ability. FEBS Open Bio 2:60

    Google Scholar 

  103. Duclos RI Jr, Cleary DC, Catcott KC, Zhou ZS (2015) Synthesis and characterization of Se-adenosyl-L-selenohomocysteine selenoxide. J Sulfur Chem 36(2):135

    Article  CAS  Google Scholar 

  104. (a) Kelly AM, Rosini GP, Goldman AS (1997) Oxygen transfer from organoelement oxides to carbon monoxide catalyzed by transition metal carbonyls. J Am Chem Soc 119(26):6115; (b) Młochowski J, Wójtowicz-Młochowska H (2015) Developments in synthetic application of selenium (IV) oxide and organoselenium compounds as oxygen donors and oxygen-transfer agents. Molecules 20:10205

    Google Scholar 

  105. Ariyoshi A, Aso Y, Otsubo T, Ogura F (1984) Application of bis(p-methoxyphenyl) selenoxide as an oxidizing agent of kornblum oxidation. Chem Lett 13(6):891

    Article  Google Scholar 

  106. Nishibayashi Y, Uemura S (2000) Selenoxide elimination and [2,3]sigmatropic rearrangement. In: Wirth T (eds) Organoselenium chemistry. Topics in current chemistry, Vol 208. Springer, Berlin

    Google Scholar 

  107. (a) Zhou ZS, Jiang N, Hilvert D (1997) An antibody-catalyzed selenoxide elimination. J Am Chem Soc 119:3623; (b) Sharpless KB, Young MW (1975) Olefin synthesis. Rate enhancement of the elimination of alkyl aryl selenoxides by electron-withdrawing substituents. J Org Chem 40:947; (c) Reich HJ, Wollowitz S, Trend JE, Chow F, Wendelborn DF (1978) Syn elimination of alkyl selenoxides. Side reactions involving selenenic acids. Structural and solvent effects of rates. J Org Chem 43:1697; (d) Reich HJ (1979) Functional group manipulation using organoselenium reagents. Acc Chem Res 12(1):22; (e) Sharpless KB, Young MW, Lauer RF (1973) Reactions of selenoxides: thermal syn-elimination and H218O exchange. Tetrahedron Lett 14(22):1979

    Google Scholar 

  108. Henriksen L, Jakobsen S (2001) Dissociative cycloelimination, a new selenium based pericyclic reaction. Chem Commun 2448

    Google Scholar 

  109. (a) Reich HJ, Renga JM, Reich LL (1975) Organoselenium chemistry. Conversion of ketones to enones by selenoxide syn elimination. J Am Chem Soc 97(19):5434; (b) Goodman MA, Detty MR (2006) Selenoxides as catalysts for epoxidation and Baeyer-Villiger oxidation with hydrogen peroxide. Synlett 7:1100; (c) Yaremenko IA, Vil VA, Demchuk DV, Terentev AO (2016) Rearrangements of organic peroxides and related processes. Beilstein J Org Chem 12:1647

    Google Scholar 

  110. Reich HJ, Renga JM, Reich LL (1975) Organoselenium chemistry. Conversion of ketones to enones by selenoxide syn elimination. J Am Chem Soc 97(19):5434

    Google Scholar 

  111. Drabowicz J, Łyżwa P, Łuczak J, Mikołajczyk M, Laur (1997) New procedures for theoxidation of sulphides to sulfoxides and sulfones. Phosphorus Sulfur. Silicon Relat Elem 120–121:425

    Google Scholar 

  112. Goodman MA, Detty MR (2004) Selenoxides as catalysts for the activation of hydrogen peroxide. Bromination of organic substrates with sodium bromide and hydrogen peroxide. Organometallics 23(12):3016

    Article  CAS  Google Scholar 

  113. Dikarev V, Petrukhina MA, Li X, Bock E (2003) Small organoselenium molecules. 1. Dimethyl Selenoxide: structure, complexation, and gas-phase transformation. Inorg Chem 42(6):1966

    Article  CAS  Google Scholar 

  114. (a) Krasowska D, Sancineto L, Desk M, Drabowicz J (2020) Optically active selenoxides: structural and synthetic aspects. Symmetry 12(3):349 (1–24); (b) Davis FA, Billmers JM, Stringer OD (1983) First synthesis of simple optically active selenoxides. Tetrahedron Lett 24(31):3191

    Google Scholar 

  115. Stratakis M, Rabalakos C, Sofikiti N (2003) Selective deoxygenation of aryl selenoxides by triaryl phosphites. Evidence for a concerted transformation. Tetrahedron Lett 44(2):349

    Article  CAS  Google Scholar 

  116. Arai K, Kumakura F, Takahira M, Sekiyama N, Kuroda N, Suzuki T, Iwaoka M (2015) Effects of ring size and polar functional groups on the glutathione peroxidase-like antioxidant activity of water-soluble cyclic selenides. J Org Chem 80(11):5633

    Article  CAS  Google Scholar 

  117. Michio K, Hiromi O, Toshio S (1986) Synthesis of selenoxides by oxidation of selenides with t-butyl hypochlorite, and its application for synthesis of optically active selenoxide. Bull Chem Soc Jpn 59(2):503; (b) Mochowski J, Peczyńska-Czoch W, Piętka-Ottlik M, Wójtowicz-Mƚochowska H (2011) Non-metal and enzymatic catalysts for hydroperoxide oxidation of organic compounds. Open Catal J 4:54

    Google Scholar 

  118. (a) Bhabak KP, Mugesh G (2009) Synthesis and structure–activity correlation studies of secondary- and tertiary-amine-based glutathione peroxidase mimics. Chem Eur J 15(38):9846; (b) Cotgreave IA, Moldéus P, Brattsand R, Hallberg A, Andersson CM, Engman L (1992) Alpha-(phenylselenenyl)acetophenone derivatives with glutathione peroxidase-like activity. A comparison with ebselen. Biochem Pharmacol 43(4):793

    Google Scholar 

  119. Sama T, Shimizu T, Hirabayashi K, Kamigata N (2007) Stabilizing effect of intramolecular lewis base toward racemization of optically active selenoxides. Heteroat Chem 18:301

    Article  Google Scholar 

  120. Khurana JM, Kandpal BM, Chauhan YK (2003) Rapid oxidation of selenides, selenoxides, tellurides, and telluroxides with aqueous sodium hypochlorite. Phosphorus. Sulfur Silicon Relat Elem 178(6):1369

    Article  CAS  Google Scholar 

  121. Agenäs LB, Lindgren G (1970) The oxidation products of some straight chain selenosubstituted dicarboxylic acids. Acta Chem Scand 24:3301

    Article  Google Scholar 

  122. Tiecco M, Testaferri L, Temperini A, Terlizzi R, Bagnoli L, Marini F, Santi C (2005) Synthesis of selenoxides by oxidation of selenides with superoxide radical anions and 2-nitrobenzenesulfonyl chloride. Tetrahedron Lett 46(31):5165

    Article  CAS  Google Scholar 

  123. Sands KN, Tuck TA, Back TG (2018) Cyclic seleninate esters, spirodioxyselenuranes and related compounds: new classes of biological antioxidants that emulate glutathione peroxidase. Chem Eur J 24(39):9714

    Article  CAS  Google Scholar 

  124. Press DJ, Mercier EA, Kuzma D, Back TG (2008) Substituent effects upon the catalytic activity of aromatic cyclic seleninate esters and spirodioxyselenuranes that act as glutathione peroxidase mimetics. J Org Chem 73(11):4252

    Article  CAS  Google Scholar 

  125. (a) McNeil NMR, Matz MC, Back TG (2013) Fluxional cyclic seleninate ester: nmr and computational studies, glutathione peroxidase-like behavior, and unexpected rearrangement. J Org Chem 78(20):10369; (b) Selvakumar K, Singh HB, Goel N, Singh UP, Butcher RJ (2011) Synthesis and structural characterization of pincer type bicyclic diacyloxy- and diazaselenuranes. Dalton Trans 40:9858

    Google Scholar 

  126. (a) Sarma BK, Manna D, Minoura M, Mugesh G (2010) Synthesis, structure, spirocyclization mechanism, and glutathione peroxidase-like antioxidant activity of stable spirodiazaselenurane and spirodiazatellurane. J Am Chem Soc 132(15):5364; (b) Day RO, Holmes RR (1981) Crystal structures of a tetraoxy spirocyclic selenurane and tellurane. Lone pair effects. Inorg Chem 20(9):3071

    Google Scholar 

  127. Drabowicz J, Mikołajczyk M (2000) Selenium at higher oxidation state. In: Wirth T (ed) Organoselenium chemistry. Topics in current chemistry, Vol 208. Springer, Berlin, Heidelberg, pp 143–176

    Google Scholar 

  128. Back TG, Moussa Z, Parvez M (2004) The exceptional glutathione peroxidase-like activity of di(3-hydroxypropyl) selenide and the unexpected role of a novel spirodioxaselenanonane intermediate in the catalytic cycle. Angew Chem Int Ed. 43:1268

    Google Scholar 

  129. (a) PrasadPR, Singh HB, Butcher RJ (2015) Synthesis, structure and antioxidant activity of cyclohexene-fused selenuranes and related derivatives. Molecules 20(7):12670; (b) Lamani DS, Bhowmick D, Mugesh G (2015) Substituent effects on the stability and antioxidant activity of spirodiazaselenuranes. Molecules 20(7):12959; (c) Upadhyay A, Batabyal M, Kanika, Kumar S (2020) Organoseleniums: generated and exploited in oxidative reactions. Chem Lett 49(4):395

    Google Scholar 

  130. Kuzma D, Parvez M, Back TG (2007) Formation of a spirodiazaselenurane and its corresponding azaselenonium derivatives from the oxidation of 2,2′-selenobis(benzamide). Structure, properties and glutathione peroxidase activity. Org Biomol Chem 5(19):3213

    Article  CAS  Google Scholar 

  131. (a) Agenäs LB, Lindgren G (1970) The oxidation products of some straight chain selenosubstituted dicarboxylic acids. Acta Chem Scand 24:3301; (b) Iwaoka M, Kumakura F (2008) PApplications of water-soluble selenides and selenoxides to protein chemistry. Phosphorus Sulfur Silicon Relat Elem 183(4):1009

    Google Scholar 

  132. Selvakumar K, Singh HB, Goel N, Singh UP, Butcher RJ (2011) Synthesis and structural characterization of pincer type bicyclic diacyloxy- and diazaselenuranes. Dalton Trans 40:9858

    Article  CAS  Google Scholar 

  133. Lawrence MAW, Green K-A, Nelson PN, Lorraine SC (2018) Review: pincer ligands-Tunable, versatile and applicable. Polyhedron 143:11

    Article  CAS  Google Scholar 

  134. (a) Charette BJ, Ritch JS (2016) A selenium-containing diarylamido pincer ligand: synthesis and coordination chemistry with group 10 metals. Inorg Chem 55(12):6344; (b) Das D, Singh P, Singh M, Singh AK (2010) Tetradentate selenium ligand as a building block for homodinuclear complexes of Pd(ii) and Ru(ii) having seven membered rings or bis-pincer coordination mode: high catalytic activity of Pd-complexes for Heck reaction. Dalton Trans 39:10876

    Google Scholar 

  135. Kumar A, Rao GK, Kumar S, Singh AK (2014) Formation and role of palladium chalcogenide and other species in suzuki–miyaura and heck C–C coupling reactions catalyzed with palladium(II) complexes of organochalcogen ligands: realities and speculations. Organometallics 33(12):2921

    Article  CAS  Google Scholar 

  136. Kumar S, Rao GK, Kumar A, Singh MP, Singh AK (2013) Palladium(II)-(E,N,E) pincer ligand (E = S/Se/Te) complex catalyzed Suzuki coupling reactions in water via in situ generated palladium quantum dots. Dalton Trans 42:16939

    Article  CAS  Google Scholar 

  137. (a) Das D, Rao GK, Singh AK (2009) Palladium(II) complexes of the first pincer (Se,N,Se) ligand, 2,6-Bis((phenylseleno)methyl)pyridine (L): solvent-dependent formation of [PdCl(L)]Cl and Na[PdCl(L)][PdCl4] and high catalytic activity for the heck reaction. Organometallics 28(20):6054; (b) Ghavale N, Manjare ST, Singh HB, Butcher RJ (2015) Bis(chalcogenones) as pincer ligands: isolation and Heck activity of the selone-ligated unsymmetrical C,C,Se–Pd pincer complex. Dalton Trans 44:11893

    Google Scholar 

  138. Kumar A, Rao GK, Saleem F, Singh AK (2012) Organoselenium ligands in catalysis. Dalton Trans 41(1977):11949

    Article  CAS  Google Scholar 

  139. Back TG, Moussa Z (2002) Remarkable activity of a novel cyclic seleninate ester as a glutathione peroxidase mimetic and its facile in situ generation from allyl 3-hydroxypropyl selenide. J Am Chem Soc 124(41):12104

    Article  CAS  Google Scholar 

  140. Back TG, Kuzma D, Parvez M (2005) Aromatic derivatives and tellurium analogues of cyclic seleninate esters and spirodioxyselenuranes that act as glutathione peroxidase mimetics. J Org Chem 70(23):9230

    Article  CAS  Google Scholar 

  141. Singh VP, Singh HB, Butcher RJ (2011) Synthesis of cyclic selenenate/seleninate esters stabilized by ortho-nitro coordination: their glutathione peroxidase-like activities. Chem Asian J 6:1431

    Article  CAS  Google Scholar 

  142. Tripathi SK, Sharma S, Singh HB, Butcher RJ (2011) 2-Phenoxyethanol derived diselenide and related compounds; synthesis of a seven-membered seleninate ester. Org Biomol Chem 9(2):581

    Article  CAS  Google Scholar 

  143. Młochowski J, Kloc K, Lisiak R, Potaczek P, Wójtowicz H (2007) Developments in the chemistry of selenaheterocyclic compounds of practical importance in synthesis and medicinal biology. ARKIVOC, (vi) 14

    Google Scholar 

  144. Bayse CA, Shoaf AL (2015) Effect of methoxy substituents on the activation barriers of the glutathione peroxidase-like mechanism of an aromatic cyclic seleninate. Molecules 20(6):10244

    Article  CAS  Google Scholar 

  145. McNeil NMR, McDonnell C, Hambrook M, Back TG (2015) Oxidation of disulfides to thiolsulfinates with hydrogen peroxide and a cyclic seleninate ester catalyst. Molecules 20(6):10748

    Article  CAS  Google Scholar 

  146. Nakashima Y, Shimizu T, Hirabayashi K, Iwasaki F, Yamasaki M, Kamigata N (2005) Optically active seleninate esters: isolation, absolute configuration, racemization mechanism, and transformation into chiral selenoxide. J Org Chem 70(13):5020

    Article  CAS  Google Scholar 

  147. Chen GP, Ziegler DM (1994) Liver microsome and flavin-containing monooxygenase catalyzed oxidation of organic selenium compounds. Arch Biochem Biophys 312(2):566

    Article  CAS  Google Scholar 

  148. (a) Kumar S, Johansson H, Engman L, Valgimigli L, Amorati R, Fumo MG, Pedulli GF (2007) Regenerable chain-breaking 2,3-dihydrobenzo[b]selenophene-5-ol antioxidants. J Org Chem 72(7):2583; (b) Kumar S, Engman L, Valgimigli L, Amorati R, Fumo MG, Pedulli GF (2007) Antioxidant profile of ethoxyquin and some of its S, Se, and Te analogues. J Org Chem 72(16):6046; (c) Iwaoka M, Kumakura F (2008) Applications of water-soluble selenides and selenoxides to protein chemistry. Phosphorus, Sulfur Silicon Relat Elem 183(4):1009; (d) Kumakura F, Mishra B, Priyadarsini KI, Iwaoka M (2010) A water-soluble cyclic selenide with enhanced glutathione peroxidase-like catalytic activities. Eur J Org Chem 440; (e) Cowan EA, Oldham CD, May SW (2011) Identification of a thioselenurane intermediate in the reaction between phenylaminoalkyl selenoxides and glutathione. Arch Biochem Biophys 506(2):201; (f) Arai K, Dedachi K, Iwaoka M (2011) Rapid and quantitative disulfide bond formation for a polypeptide chain using a cyclic selenoxide reagent in an aqueous medium. Chem Eur J 17(2):481; (g) Hodage AS, Phadnis PP, Wadawale A, Priyadarsini KI, Jain VK (2011) Synthesis, characterization and structures of 2-(3,5-dimethylpyrazol-1-yl)ethylseleno derivatives and their probable glutathione peroxidase (GPx) like activity. Org Biomol Chem 9:2992

    Google Scholar 

  149. (a) Bayse CA (2010) Model mechanisms of sulfhydryl oxidation by methyl- and benzeneseleninicacid, inhibitors of zinc-finger transcription factors. J Inorg Biochem 104(1):1; (b) Antony S, Bayse CA (2011) Modeling the mechanism of the glutathione peroxidase mimic ebselen. Inorg Chem 50(23):12075; (c) Antony S (2011) Computational investigation of the bioactive selenium compounds Ebselen and Selenious Acid; Doctor of Philosophy (PhD), dissertation, Chemistry and Biochemistry, Old Dominion University. https://doi.org/10.25777/z6fr-rn66

  150. Fischer H, Dereu N (1987) Mechanism of the catalytic reduction of hydroperoxides by ebselen: a selenium‐77 Nmr study. Bull Soc Chim Belg 96:757

    Article  CAS  Google Scholar 

  151. Reich HJ, Jasperse CP (1987) Organoselenium chemistry.' redox chemistry of selenocysteine model systems. J Am Chem Soc 109(18):5549

    Article  CAS  Google Scholar 

  152. Kice JL, Lee TW (1978) Oxidation-reduction reactions of organoselenium compounds. 1. Mechanism of the reaction between seleninic acids and thiols. J Am Chem Soc 100(16):5094

    Article  CAS  Google Scholar 

  153. Kumar S, Singh HB, Wolmershauser G (2006) Protection against peroxynitrite-mediated nitration reaction by intramolecularly coordinated diorganoselenides. Organometallics 25(2):382

    Article  CAS  Google Scholar 

  154. Kumakura F, Mishra B, Priyadarsini KI, Iwaoka M (2010) A water-soluble cyclic selenide with enhanced glutathione peroxidase-like catalytic activities. Eur J Org Chem 2010(3):440

    Google Scholar 

  155. Arai K, Noguchi M, Singh BG, Priyadarsini KI, Fujio K, Kubo Y, Iwaoka M (2013) A water-soluble selenoxide reagent as a useful probe for the reactivity and folding of polythiol peptides. FEBS Open Bio 3(1):55

    Article  CAS  Google Scholar 

  156. (a) De Silva V, Woznichak MM, Burns KL, Grant KB, May SW (2004) Selenium redox cycling in the protective effects of organoselenides against oxidant-induced dna damage. J Am Chem Soc 126(8):2409; (b) Cowan EA, Oldham CD, May SW (2011) Identification of a thioselenurane intermediate in the reaction between phenylaminoalkyl selenoxides and glutathione. Arch Biochem Biophys 506(2):201

    Google Scholar 

  157. Nascimento V, Alberto EE, Tondo DW, Dambrowski D, Detty MR, Nome F, Braga AL (2012) GPx-like activity of selenides and selenoxides: experimental evidence for the involvement of hydroxy perhydroxy selenane as the active species. J Am Chem Soc 134(1):138

    Article  CAS  Google Scholar 

  158. Li F, Liu J, Rozovsky S (2014) Glutathione peroxidase’s reaction intermediate selenenic acid is stabilized by the protein microenvironment. Free Radic Biol Med 0:127

    Google Scholar 

  159. (a) Zhao R, Holmgren A (2002) A novel antioxidant mechanism of ebselen involving ebselen diselenide, a substrate of mammalian thioredoxin and thioredoxin reductase. J Biol Chem 277(42):39456; (b) Farina M, Barbosa NB, Nogueira CW, Folmer V, Zeni G, Andrade LH, Braga AL, Rocha JB (2002) Reaction of diphenyl diselenide with hydrogen peroxide and inhibition of delta-aminolevulinate dehydratase from rat liver and cucumber leaves. Brazilian J Med Biol Res 35(6):623

    Google Scholar 

  160. Prasad PR, Singh HB, Butcher RJ (2015) Synthesis, structure and antioxidant activity of cyclohexene-fused selenuranes and related derivatives. Molecules 20(7):12670

    Article  CAS  Google Scholar 

  161. (a) Rheinboldt H, Giesbrecht E (1955) Über Selenensäuren, III. Mitteil.1): Bildung von Selenensäuren durch Reduktion von Seleninsäuren mittels Unterphosphoriger und Phosphoriger Säure. Chem Ber 88:1974; (b) Jenny W (1958) Zur Kenntnis der Sulfen- und Selenensäuren und ihrer Derivate. 5. Mitteilung. Anthrachinon-1,4-disulfen- und Anthrachinon-1,4-diselenensäure. Helv Chim Acta 41(2):317; (c) Reich H, Hoeger CA, Willis WW Jr (1982) Organoselenium chemistry. characterization of reactive intermediates in the selenoxide syn elimination: selenenic acids and selenolseleninate esters. J Am Chem Soc 104(10):2936

    Google Scholar 

  162. Reich HJ, Jasperse CP (1988) Organoselenium chemistry. Preparation and reactions of 2,4,6-tri-tert-butylbenzeneselenenic acid. J Org Chem 53(10):2389

    Article  CAS  Google Scholar 

  163. Ishii A, Matsubayashi S, Takahashi T, Nakayama J (1999) Preparation of a selenenic acid and isolation of selenoseleninates. J Org Chem 64(4):1084

    Article  CAS  Google Scholar 

  164. Zielinski Z, Presseau N, Amorati R, Valgimigli L, Pratt DA (2014) Redox chemistry of selenenic acids and the insight it brings on transition state geometry in the reactions of peroxyl radicals. J Am Chem Soc 136(4):1570

    Article  CAS  Google Scholar 

  165. Goto K, Nagahara M, Mizushima T, Shimada K, Kawashima T, Okazaki R (2001) The first direct oxidative conversion of a selenol to a stable selenenic acid: Experimental demonstration of three processes included in the catalytic cycle of glutathione peroxidase. Org Lett 3(22):3569

    Google Scholar 

  166. Selvakumar K, Singh HB, Butcher RJ (2010) Aromatic ring strain in arylselenenyl bromides: role in facile synthesis of selenenate esters via intramolecular cyclization. Chem Eur J 16(34):10576

    Article  CAS  Google Scholar 

  167. (a) Bhabak KP, Mugesh G (2009) Amide-based glutathione peroxidase mimics: effect of secondary and tertiary amide substituents on antioxidant activity. Chem Asian J 4(6):974; (b) Bhabak KP, Mugesh G (2009) Synthesis and structure–activity correlation studies of secondary- and tertiary-amine-based glutathione peroxidase mimics. Chem Eur J 15(38):9846

    Google Scholar 

  168. Sase S, Kimura R, Masuda R, Goto K (2019) Model study on trapping of protein selenenic acids by utilizing a stable synthetic congener. New J Chem 43:6830

    Article  CAS  Google Scholar 

  169. Kozlov VV, Suvorova SE (1961) Zh Obshch Khim 31:3034

    CAS  Google Scholar 

  170. Pichat L, Herbert M, Thiers M (1961) Etudes sur les methodes de preparation de la selenocystamine, selenohypotaurine et selenotaurine. Tetrahedron 12(1–2):1

    Article  CAS  Google Scholar 

  171. Abdo M, Knapp S (2008) Biomimetic seleninates and selenonates. J Am Chem Soc 130(29):9234

    Article  CAS  Google Scholar 

  172. Shimizu T, Nakashima Y, Watanabe I, Hirabayashi K, Kamigata N (2002) Optical resolution and racemization of areneseleninic acids. J Chem Soc, Perkin Trans 1:2151

    Google Scholar 

  173. (a) Brink G, Vis JM, Arends IWCE, Sheldon RA (2001) Selenium-catalyzed oxidations with aqueous hydrogen peroxide. 2. Baeyer−Villiger reactions in homogeneous solution1. J Org Chem 66(7):2429; (b) Crich D, Zou Y (2005) J Org Chem 70:3309

    Google Scholar 

  174. Kamigata N (2005) Synthesis and stereochemistry of optically active selenium and tellurium compounds. Phosphorus. Sulfur Silicon Relat Elem 180(3–4):667

    Article  CAS  Google Scholar 

  175. Nakashima Y, Shimizu T, Hirabayashi K, Yasui M, Nakazato M, Iwasaki F, Kamigata N (2005) Optically active seleninic acid: isolation, absolute configuration, stability, and chiral crystallization. Bull Chem Soc Jpn 78(4):710

    Article  CAS  Google Scholar 

  176. Domínguez-Álvarez E, Gajdács M, Spengler G, Palop JA, Marć MA, Kieć-Kononowicz K, Amaral LM, Jacob CJ, Handzlik J, Sanmartín C (2016) Identification of selenocompounds with promising properties to reverse cancer multidrug resistance. Bioorg Med Chem Lett 26(12):2821

    Article  Google Scholar 

  177. (a) Csonka A, Kincses A, Nové M, Vadas Z, Sanmartín C, Domínguez-Álvarez E, Spengler G (2019) Selenoesters and selenoanhydrides as novel agents against resistant breast cancer. Anticancer Res 39(7):3777; (b) Domínguez-Álvarez E, Plano D, Font M, Calvo A, Prior C, Jacob C, Palop JA, Sanmartín C (2014) Synthesis and antiproliferative activity of novel selenoester derivatives. Eur J Med Chem 73:153

    Google Scholar 

  178. Spengler G, Kincses A, Mosolygó T, Marć MA, Nové M, Gajdács M, Sanmartín C, McNeil HE, Blair JMA, Domínguez-Álvarez E (2019) Antimicrobial and antibiofilm activity of selenoesters and selenoanhydrides. Molecules 24(23):4264 (1–16)

    Google Scholar 

  179. Sharma N, Kumar S, Kumar S, Mehta SK, Bhasin KK (2018) Synthesis and characterization of fused imidazole heterocyclic selenoesters and their application for chemical detoxification of HgCl2. New J Chem 42:2702

    Article  CAS  Google Scholar 

  180. Sviridov AF, Ermolenko MS, Yashunsky DV, Kochetkov NK (1983) Selenoesters in organic synthesis. 1. A novel synthesis of ketones. Tetrahedron Lett 24(40):4355

    Article  CAS  Google Scholar 

  181. (a) Du J-J, Xin L-M, Lei Z, Zou S-Y, Xu W-B, Wang C-W, Zhang L, Gao X-F, Guo J (2018) Glycopeptide ligation via direct aminolysis of selenoester. Chin Chem Lett 29(7):1127; (b) Silva L, Affeldt RF, Lüdtke DS (2016) J Org Chem 81(13):5464

    Google Scholar 

  182. Raibaut L, Drobecq H, Melnyk O (2015) Selectively activatable latent thiol and selenolesters simplify the access to cyclic or branched peptide scaffolds. Org Lett 17(14):3636

    Article  CAS  Google Scholar 

  183. Jagadese J (2006) Chemistry of metal thio- and selenocarboxylates: precursors for metal sulfide/selenide materials, thin films, and nanocrystals. Vittal and Meng Tack Ng. Acc Chem Res 39(11):869

    Article  Google Scholar 

  184. Liou J-C, Singh Badsara S, Huanga Y-T, Lee C-F (2014) Syntheses of selenoesters through C–H selenation of aldehydes with diselenides under metal-free and solvent-free conditions. RSC Adv 4:41237

    Google Scholar 

  185. Baldassari LL, Mantovani AC, Senoner S, Maryasin B, Maulide N, Lüdtke DS (2018) Redox-neutral synthesis of selenoesters by oxyarylation of selenoalkynes under mild conditions. Org Lett 20(18):5881

    Article  CAS  Google Scholar 

  186. Guo R-L, Zhu X-Q, Zhang X-L, Wang Y-Q (2020) Synthesis of difluoromethylselenoesters from aldehydes via a radical process. Chem Commun 56:8976

    Article  CAS  Google Scholar 

  187. Kharma A, Misak A, Grman M, Brezova V, Kurakova L, Baráth P, Jacob C, Chovanec M, Ondrias K, Domínguez-Álvarez E (2019) Release of reactive selenium species from phthalic selenoanhydride in the presence of hydrogen sulfide and glutathione with implications for cancer research. New J Chem 43:11771

    Article  CAS  Google Scholar 

  188. Bergman J, Engman L (1978) Preparation of selena- and tellura phthalic anhydeide. Organ Preparat Procedures Int 10(6):289

    Article  CAS  Google Scholar 

  189. Wu X, Hu L (2005) Amide bond formation from selenocarboxylates and aromatic azides. Tetrahedron Lett 46(48):8401

    Article  CAS  Google Scholar 

  190. Wessjohann LA, Schneider A, Abbas M, Brandt W (2007) Selenium in chemistry and biochemistry in comparison to sulfur. Biol Chem 338(10):997

    Article  Google Scholar 

  191. (a) Gamblin DP, Garnier P, van Kasteren S, Oldham NJ, Fairbanks AJ, Davis BG (2004) Glyco-SeS: selenenylsulfide-mediated protein glycoconjugation—a new strategy in post-translational modification. Angew Chem Int Ed 43(7):828; (b) Boutureira O, Bernardes GJL, Gonzalez MF, Anthony DC, Davies DG (2012) Selenenylsulfide-linked homogeneous glycopeptides and glycoproteins: synthesis of human “Hepatic Se Metabolite A”. Angew Chem Int Ed 51(6):1432

    Google Scholar 

  192. Haratake M, Tachibana Y, Emaya Y, Yoshida S, Fuchigami T, Nakayama M (2016) Synthesis of nanovesicular glutathione peroxidase mimics with a selenenylsulfide-bearing lipid. ACS Omega 1(1):58

    Article  CAS  Google Scholar 

  193. Bhabak KP, Mugesh G (2007) Synthesis, characterization and antioxidant activity of some ebselen analogues. Chem Eur J 13(16):4594

    Article  CAS  Google Scholar 

  194. Duhamel E, Pöllnitz A, Stegarescu A, Silvestru A, Anorg Z (2011) Hypervalent organoselenium(II) compounds with organophosphorus ligands. crystal and molecular structure of [2-(iPr2NCH2)C6H4]Se[S2PR′2] (R′ = Ph, OiPr). Allg Chem 637(10):1355

    Article  CAS  Google Scholar 

  195. Sarma BK, Mugesh G (2005) Glutathione peroxidase (GPx)-like antioxidant activity of the organoselenium drug ebselen:  unexpected complications with thiol exchange reactions. J Am Chem Soc 127(32):11477

    Article  CAS  Google Scholar 

  196. Abdo M, Sun Z, Knapp S (2013) Biohybrid -Se-S- coupling reactions of an amino acid derived seleninate. Molecules 18(2):1963

    Article  CAS  Google Scholar 

  197. Back TG (1994) Selenium: organoselenium chemistry. In: King RB (ed) Encyclopedia of inorganic chemistry. Wiley, p 3690

    Google Scholar 

  198. Iwaoka M (2012) Nucleophilic selenium. In: Wirth T (eds) Organoselenium chemistry: synthesis and reactivity. Wiley-VCH Verlag, GmbH, p 53

    Google Scholar 

  199. Zade SS, Singh HB (2014) Synthesis of organoselenium compounds. In: Rappoport Z (ed) The chemistry of organic selenium and tellurium compunds. Wiley, p 1

    Google Scholar 

  200. Krief A, van Wemmed T, Redon M, Dumont W, Delmotte C (1999) The first synthesis of organic diselenolates: application to the synthesis of diorganyl diselenides. Angew Chem Int Ed 38(15):2245

    Article  CAS  Google Scholar 

  201. Canales S, Crespo O, Gimeno MC, Jones PG, Laguna A, Romero P (2003) Gold and silver derivatives with the carborane-selenolate ligand [B10H11C2Se]. Dalton Trans 4525

    Google Scholar 

  202. (a) Donahue CJ, Martin VA, Schoenfelner BA, Kosinski EC (1991) Preparation and spectral and electrochemical characterization of the tetrakis eight-coordinate molybdenum(IV) and tungsten(IV) complexes containing tert-butyl- and 2-hydroxy-, 2-mercapto-, and 2-(hydroseleno)-substituted pyridine and pyrimidine ligands. Inorg Chem 30(7):1588; (b) Kienitz CO, Thöne C, Jones PG (1996) Coordination Chemistry of 2,2′-Dipyridyl Diselenide: X-ray Crystal Structures of PySeSePy, [Zn(PySeSePy)Cl2], [(PySeSePy)Hg(C6F5)2], [Mo(SePy)2(CO)3], [W(SePy)2(CO)3], and [Fe(SePy)2(CO)2] (PySeSePy) C5H4NSeSeC5H4N; SePy) [C5H4N(2-Se)-N,Se]). Inorg Chem 35(13):3990

    Google Scholar 

  203. (a) Ashaks J, Bankovsky Yu, Zoruma D, Shestakova I, Domracheva I, Nesterova A, Lukevics E (2004) Synthesis of quinoline-8-selenol, its complex compounds with metals and their cytotoxic activity. Chem Heterocycl Compd 40:776; (b) Lukevics E, Zoruma D, Ashaks J, Shestakova I, Domracheva I, Bridane V, Yashchenko E (2009) Synthesis and cytotoxicity of methyl-substituted 8-quinolineselenolates of ruthenium, rhodium, osmium, and iridium. Chem Heterocycl Compd 45:182

    Google Scholar 

  204. (a) Sharpless KB, Lauer RF (1973) Mild procedure for the conversion of epoxides to allylic alcohols. First organoselenium reagent. J Am Chem Soc 95(8):2697; (b) Comasseto JV, Ling LW, Petragnani N, Stefani HA (1997) Vinylic selenides and tellurides - preparation, reactivity and synthetic applications. Synthesis 1997(4):373; (c) Manna D, Mugesh G (2010) A chemical model for the inner-ring deiodination of thyroxine by iodothyronine deiodinase. Angew Chem Int Ed 49(48):9246

    Google Scholar 

  205. Metanis N, Keinan E, Dawson PE (2006) Synthetic seleno-glutaredoxin 3 analogues are highly reducing oxidoreductases with enhanced catalytic efficiency. J Am Chem Soc 128(51):16684

    Article  CAS  Google Scholar 

  206. Bhabak KP, Mugesh G (2008) A simple and efficient strategy to enhance the antioxidant activities of amino‐substituted glutathione peroxidase mimics. Chem Eur J 14(28):8640

    Article  CAS  Google Scholar 

  207. Yoshida S, Kumakura F, Komatsu I, Arai K, Onuma Y, Hojo H, Singh BG, Priyadarsini KI, Iwaoka M (2011) Antioxidative glutathione peroxidase activity of selenoglutathione. Angew Chem Int Ed 50(9):2125

    Article  CAS  Google Scholar 

  208. Crich D, Hwang JT, Gastaldi S, Recupero F, Wink DJ (1999) Diverging effects of steric congestion on the reaction of tributylstannyl radicals with areneselenols and aryl bromides and their mechanistic implications. J Org Chem 64(8):2877

    Article  CAS  Google Scholar 

  209. Gosselck J (1958) Über einige selenhaltige Heterocyclen. Chem Ber 91(11):2345

    Article  CAS  Google Scholar 

  210. Laube J, Jäger S, Thöne C (2001) Thöne, synthesis and structural studies of pyridine-2-selenolates - reactions with electrophilic phosphorus (III) compounds and related complex chemistry. Eur J Inorg Chem 2001(8):1983

    Google Scholar 

  211. (a) Landry VK, Minoura M, Pang K, Buccella D, Kelly BV, Perkin G (2006) Synthesis and structural characterization of 1-Mesityl-1,3-dihydro-imidazole-2-selone and Bis(1-mesitylimidazol-2-yl)diselenide: experimental evidence that the selone is more stable than the selenol tautomer. J Am Chem Soc 128(38):12490; (b) Guziec LJ, Guziec FS Jr (1994) A directed metalation route to the selenium analog of methimazole. J Org Chem 59(16):4691

    Google Scholar 

  212. Perkin G, Lenardo EJ, Jacob RG, Panatieri RB (2009) Synthesis of vinyl selenides. Chem Rev 109(3):1277

    Article  Google Scholar 

  213. (a) Beletskaya IP, Ananikov VP (2007) Addition reactions of E-E and E-H bonds to triple bond of alkynes catalyzed by Pd, Pt, and Ni complexes (E=S, Se). Pure Appl Chem 79(6):1041; (b) Ananikov VP, Orlov NV, Zalesskiy SS, Beletskaya IP, Khrustalev VN, Morokuma K, Musaev DG (2012) Catalytic adaptive recognition of thiol (SH) and selenol (SeH) groups toward synthesis of functionalized vinyl monomers. J Am Chem Soc 134(15):6637

    Google Scholar 

  214. Kumar S, Helt JCP, Autschbach J, Detty MR (2009) A new reaction for organoselenium compounds: alkyl transfer from diorganoselenium(IV) dibromides to alkenoic acids to give γ- and δ-lactones. Organometallics 28(12):3426

    Google Scholar 

  215. Engman L (1985) Phenyl selenium trichloride in synthesis. Reaction with ketones. A new variation of the selenoxide elimination reaction. Tetrahedron Lett 26(51):6385

    Article  CAS  Google Scholar 

  216. Holzle G, Jenny W (1958) Zur Kenntnis der Sulfen- und Selenensäuren und ihrer Derivate. 9. Mitteilung Additions- und Substitutionsreaktionen organischer Selen- verbindunġen mit unpolaren und polaren Äthylenen2. Helv Chim Acta 41:593

    Article  Google Scholar 

  217. Santi C, Santoro S (2012) Electrophilic selenium. In: Wirth T (ed) Organoselenium chemistry: synthesis and reactivity. Wiley-VCH Verlag, GmbH, pp 1–51

    Google Scholar 

  218. Jackson WP, Ley SV, Whittle AJ (1980) Selenium-mediated cyclization reactions of alkenyl-substituted β-ketoesters. J Chem Soc Chem Commun 1173

    Google Scholar 

  219. Davis FA, Zhou R, Lal GS (1990) A new synthesis of α-functionalized unsubstituted sulfonamides. Tetrahedron Lett 31(12):1653

    Article  CAS  Google Scholar 

  220. Back TG, Murlidharan KR (1991) Formation and electrophilic reactions of benzeneselenenyl p-Toluenesulfonate. Preparation and properties of addition products with acetylenes. J Org Chem 56(8):2781

    Article  CAS  Google Scholar 

  221. Murata S, Suzuki T (1987) Stereoselective formation of tetrahydrofuran and -pyran by benzeneselenenyl triflate. Tetrahedron Lett 28(38):4415

    Article  CAS  Google Scholar 

  222. Lapkin II, Dedugov AN, Pavlova NN, Org Zh (1985) Organoselenium compounds IV. Methyl Arylselenocarboxylates and their synthesis and properties. Khim 21:345

    CAS  Google Scholar 

  223. Toshimitsu A, Owada H, Terao K, Uemura S, Okano M (1984) Pyridylseleno group in organic synthesis. Preparation and oxidation of a-(2-Pyridylseleno) carbonyl compounds leading to α,ß-unsaturated ketones and aldehydes. J Org Chem 49(20):3796

    Article  CAS  Google Scholar 

  224. Boduszek B, Gancarz R (1996) Pyridine-4-selenenyl bromides as new reagents for selenenylation of olefins. J Prakt Chem 338(1):186

    Article  CAS  Google Scholar 

  225. Andreou T, Bures J, Vilarrasa J (2010) Reaction of dess–martin periodinane with 2-(alkylselenyl)pyridines. Dehydration of primary alcohols under extraordinarily mild conditions. Tetrahedron Lett 51(14):1863

    Article  CAS  Google Scholar 

  226. Denmark SE, Edwards MG (2006) On the mechanism of the selenolactonization reaction with selenenyl halides. J Org Chem 71(19):7293

    Article  CAS  Google Scholar 

  227. (a) du Mont WW, Kubiniok S, Peters K, von Schnering HG (1987) Synthesis and structure of a stable iodoselenide. Angew Chem Int Ed 26(8):780; (b) du Mont WW, Marlens A, Pohl S, Saak W (1990) Reversible dismutation and coordination of bis(2,4,6-triisopropylphenyl) diselenide with iodine. A model study that relates to iodine intercalation between selenium chains. Inorg Chem 29(24):4847; (c) Goto K, Sonoda D, Simada K, Sare S, Kawashima T (2010) Modeling of the 5′-deiodination of thyroxine by iodothyronine deiodinase: chemical corroboration of a selenenyl iodide intermediate. Angew Chem Int Ed 49(3):545

    Google Scholar 

  228. Kandasamy K, Kumar S, Singh HB, Butcher RJ, Holman KT (2004) Synthesis, structural characterization and fluorescence properties of organoselenium compounds bearing a ligand containing both bulky and nonbonding groups − the first observation of both intramolecular Se···N and Se···O interactions in a diselenide structure. Eur J Inorg Chem 2004(4):1014

    Google Scholar 

  229. Mugesh G, Singh HB, Butcher RJ (1999) Novel chiral organoselenenyl halides stabilized by Se···N nonbonded interactions: synthesis and structural characterization. Tetrahedron: asymmetry 10(2):237

    Google Scholar 

  230. Mueller B, Takaluoma TT, Laitinen RS, Seppelt K (2011) Syntheses and structures of two dimethyl diselenide–diiodine adducts and the first well characterized diorgano disulfide–nitrosonium adduct. Eur J Inorg Chem 2011(52):4970

    Google Scholar 

  231. Barnes NA, Godfrey SM, Hughes J, Khan RZ, Mushtaq I, Ollerenshaw RTA, Pritchard RG, Sarwar S (2013) The reactions of para-halo diaryl diselenides with halogens. A structural investigation of the CT compound (p-FC6H4)2Se2I2, and the first reported “RSeI3” compound, (p-ClC6H4)SeI·I2, which contains a covalent Se–I bond. Dalton Trans 42:2735

    Article  CAS  Google Scholar 

  232. Kubniok S, du Mont WW, Pohl S, Saak W (1988) The reagent diphenyldiselane/iodine: no phenylselenenyl iodide but a charge transfer complex with cyclic moieties. Angew Chem Int Ed 27:431

    Article  Google Scholar 

  233. Kaltsoyannis N (1997) Computational study of the electronic and geometric structures of the dihalogenodimethylselenium compounds, Me2SeX2 (X = F, Cl, Br, I or At). J Chem Soc Dalton Trans 4759

    Google Scholar 

  234. Mukherjee AJ, Zade SS, Singh HB, Sunoj RB (2010) Organoselenium chemistry: role of intramolecular interactions. Chem Rev 110:4357

    Article  CAS  Google Scholar 

  235. (a) Guillemin J-C (2011) Organic selenocyanates: synthesis, characterization and uses in chemistry and biology. Curr Organ Chem 15(11):1670; (b)Ali W, Álvarez-Pérez M, Marć MA, Salardón-Jiménez N, Handzlik J, Domínguez-Álvarez E (2018) The anticancer and chemopreventive activity of selenocyanate-containing compounds. Curr Pharmacol Rep 4:468

    Google Scholar 

  236. (a) Ghosh SK, Hossain SU, Bhattacharya S, Bhattacharya SC (2005) 2-(2-Selenocyanic acid ethyl ester)-1H-benz[de] isoquinoline-1,3-(2H)-dione, synthesis photophysics and interaction with bovine serum albumin: A spectroscopic approach. J Photochem Photobiol B: Bio 81(2):121; (b) Hossain SU, Sengupta S, Bhattacharya S (2005) Synthesis and evaluation of antioxidative properties of a series of organoselenium compounds. Bioorg Med Chem 13(20):5750

    Google Scholar 

  237. Chakraborty S, Yadav SK, Subramanian M, Priyadarsini KI, Iwaoka M, Chattopadhyay S (2012) DL-trans-3,4-Dihydroxy-1-selenolane (DHSred) accelerates healing of indomethacin-induced stomach ulceration in mice. Free Radical Res 46(11):1378

    Article  CAS  Google Scholar 

  238. Verma P, Kunwar A, Arai K, Iwaoka M, Priyadarsini KI (2016) Alkyl chain modulated cytotoxicity and antioxidant activity of bioinspired amphiphilic selenolanes. Toxicol Res 5(2):434

    Article  CAS  Google Scholar 

  239. Iwaoka M, Takahashi T, Tomoda S (2001) Syntheses and structural characterization of water-soluble selenium reagents for the redox control of protein disulfide bonds. Heteroat Chem 12(4):293

    Google Scholar 

  240. Iwaoka M, Katakura A, Mishima J, Ishihara Y, Kunwar A, Priyadarsini KI (2015) Mimicking the lipid peroxidation inhibitory activity of phospholipid hydroperoxide glutathione peroxidase (GPx4) by using fatty acid conjugates of a water-soluble selenolane. Molecules 20(7):12364

    Google Scholar 

  241. Phadnis PP, Wadawale A, Priyadarsini KI, Jain VK, Iwaoka M (2015) Synthesis, characterization, and structure of trans-3,4-dihydroxy-1-selenolane {DHS(OH)2} substituted derivatives. Tetrahedron Lett 56(18):2293

    Article  CAS  Google Scholar 

  242. Danquigny A, Meziane MAA, Demailly G, Benazza M (2005) Short synthesis of hydroxylated thiolane and selenolane rings from mono-benzylated pentitols and aldoses dithioacetals bis-thionocarbonates as bis-electrophilic substrates. Tetrahedron 61(28):6772

    Article  CAS  Google Scholar 

  243. Mao C-L, Barnish IT, Hauser CR (1969) Synthesis of phthalimidines. Acid-catalyzed cyclodehydration versus cyclodeamination of γ-hydroxyamides obtained from dilithio-N-substituted benzamides and ketones. J Heterocycl Chem 6(4):475

    Article  CAS  Google Scholar 

  244. Engman L, Hallberg A (1989) Expedient synthesis of ebselen and related compounds. J Org Chem 54(12):2964

    Article  CAS  Google Scholar 

  245. Singh VP, Poon J-F, Yan J, Lu X, Ott MK, Butcher RJ, Gates PJ, Engman L (2017) Nitro-, Azo-, and Amino derivatives of ebselen: synthesis, structure, and cytoprotective effects. J Org Chem 82(1):313

    Article  CAS  Google Scholar 

  246. (a) Bhabak KP, Mugesh G (2007) Synthesis, characterization, and antioxidant activity of some ebselen analogues. Chemistry 13(16):4594–601; (b) Bhabak KP, Mugesh G (2007) Synthesis, characterization, and antioxidant activity of some ebselen analogues. Chem Eur J 13(16):4594

    Google Scholar 

  247. Messali M, Abboudi M, Aouad MR, Rezki N, Christiaens LE (2011) Synthesis and characterization of a new five and six membered selenoheterocyclic compounds homologues of ebselen. Organ Chem Int 2011 (2011) Article ID 389615 (p 7)

    Google Scholar 

  248. Küppers J, Schulz-Fincke AC, Palus J, Giurg M, Skarżewski J, Gütschow M (2016) Convergent synthesis of two fluorescent ebselen-coumarin heterodimers. Pharmaceuticals 9(3):43 (1–11)

    Google Scholar 

  249. Shi C, Yu LZ, Yang FG, Yan J, Zeng HH (2003) A novel organoselenium compound induces cell cycle arrest and apoptosis in prostate cancer cell lines. Biochem Biophys Res Commun 309(3):578

    Article  CAS  Google Scholar 

  250. Ollivier N, Blanpain A, Boll E, Raibaut L, Drobecq H, Melnyk O (2014) Selenopeptide transamidation and metathesis. Org Lett 16(15):4032

    Article  CAS  Google Scholar 

  251. (a) Muttenthaler M, Andersson A, de Araujo AD, Dekan Z, Lewis RJ, Alewood PFJ (2010) Modulating oxytocin activity and plasma stability by disulfide bond engineering. J Med Chem 53(24):8585; (b) Berry SM, Gieselman MD, Nilges MJ, van der Donk WA, Lu Y (2002) An engineered azurin variant containing a selenocysteine copper ligand. J Am Chem Soc 124(10):2084; (c) Gowd KH, Yarotskyy V, Elmslie KS, Skalicky JJ, Olivera BM, Bulaj G (2010) Site-specific effects of diselenide bridges on the oxidative folding of a cystine knot peptide, omega-selenoconotoxin GVIA. Biochemistry 49(12):2741

    Google Scholar 

  252. Muttenthaler M, Alewood PF (2008) Selenopeptide chemistry. J Pept Sci 14(12):1223

    Article  CAS  Google Scholar 

  253. (a) Frank W, Hoppe-Seyler’s Z (1964) [Syntheses of selenium-containing peptides. II. Preparation of Se-analogous oxidated glutathionee (Se-Se-glutathion)]. Physiol Chem 339(1):214; (b) Theodoropoulos D, Schwartz IL, Walter R (1967) Synthesis of selenium-containing peptides. Biochemistry 6(12):3927

    Google Scholar 

  254. Oikawa T, Esaki N, Tanaka H, Soda K (1991) Metalloselenonein, the selenium analogue of metallothionein: synthesis and characterization of its complex with copper ions. Proc Natl Acad Sci USA 88(8):3057

    Article  CAS  Google Scholar 

  255. Casi G, Hilvert D (2007) Reinvestigation of a selenopeptide with purportedly high glutathione peroxidase activity. J Biol Chem 282(42):30518

    Article  CAS  Google Scholar 

  256. (a) Liu J, Chen Q, Rozovsky S (2018) Selenocysteine-mediated expressed protein ligation of SELENOM. Methods Mol Biol 1661:265, Humana Press, New York, NY; (b) Liu J, Chen Q, Rozovsky S (2017) Utilizing selenocysteine for expressed protein ligation and bioconjugations. J Am Chem Soc 139(9):3430

    Google Scholar 

  257. (a) Liu J, Cheng R, Rozovsky S (2018) Synthesis and semisynthesis of selenopeptides and selenoproteins. Curr Opin Chem Biol 46:41; (b) Aravindhan S, Singh HB, Zeller M, Butcher RJ (2019) Synthesis of selenopeptides: an alternative way of incorporating selenocystine. Amino Acids 51(4):661; (c) Shimodaira S, Iwaoka M (2017) Improved synthetic routes to the selenocysteine derivatives useful for Boc-based peptide synthesis with benzylic protection on the selenium atom. Arkivoc, Part II 260

    Google Scholar 

  258. Hondal RJ, Nilsson BL, Raines RT (2001) Selenocysteine in native chemical ligation and expressed protein ligation. J Am Chem Soc 123(21):5140

    Article  CAS  Google Scholar 

  259. Shimodaira S, Takei T, Hojo H, Iwaoka M (2018) Synthesis of selenocysteine-containing cyclic peptides via tandem N-to-S acyl migration and intramolecular selenocysteine-mediated native chemical ligation. Chem Commun 54:11737

    Article  CAS  Google Scholar 

  260. Prabhu CP, Phadnis PP, Wadawale A, Priyadarsini KI, Jain VK (2013) One-pot synthesis of phenylseleno N-acetyl α-amino acids: supra-molecular self-assembling in organoselenium compounds. J Organomet Chem 745–746:140

    Article  Google Scholar 

  261. Barick KC, Dutta B, Gawali SL, Phadnis PP, Priyadarsini KI, Jain VK, Hassan PA, (2020) Phenylseleno N-acetyl α-amino acids conjugated magnetic nanoparticles: synthesis, characterization and radical scavenging ability. Chem Lett 49(11):1426

    Google Scholar 

  262. Theodoropoulos D, Schwartz IL, Walter R (1967) Synthesis of selenium-containing peptides. Biochemistry 6(12):3927

    Article  CAS  Google Scholar 

  263. Hondal RJ (2005) Incorporation of selenocysteine into proteins using peptide ligation. Protein Pept Lett 12(8):757

    Article  CAS  Google Scholar 

  264. (a) Wu Z-P, Hilvert D (1991) Redesign of protein function: a semisynthetic selenoenzyme. In: Gebelein CG (ed) Biotechnology and polymers. Springer, Boston; (b) Wu ZP, Hilvert D (1989) Conversion of a protease into an acyl transferase: selenolsubtilisin. J Am Chem Soc 111(12):4513; (c) Bell IM, Fisher ML, Wu ZP, Hilvert D (1993) Kinetic studies on the peroxidase activity of selenosubtilisin. Biochemistry 32(14):3754; (d) Wu ZP, Hilvert D (1990) Selenosubtilisin as a glutathione peroxidase mimic. J Am Chem Soc 112(14):5647; (e) House KL, Dunlap RB, Odom JD, Wu ZP, Hilvert D (1992) Structural characterization of selenosubtilisin by selenium-77 NMR spectroscopy. J Am Chem Soc 114(22):8573

    Google Scholar 

  265. Ren X, Jemth P, Board PG, Luo G, Mannervik B, Liu J, Zhang K, Shen J (2002) A semisynthetic glutathione peroxidase with high catalytic efficiency: selenoglutathione transferase. Chem Biol 9(7):789

    Article  CAS  Google Scholar 

  266. (a) Liu JQ, Jiang MS, Luo GM, Yan GL, Shen JC (1998) Conversion of trypsin into a selenium containing enzyme by using chemical mutation. Biotechnol Lett 20(7):693; (b) Huang Y, Ge D-Y, Zong H, Yin J-X, Qu X-N, Lv S-W (2017) Active site mimicry of glutathione peroxidase by glutathione imprinted selenium-containing trypsin. Catalysts 7(10):282 (1–12)

    Google Scholar 

  267. Xu H, Cao W, Zhang X (2013) Selenium-containing polymers: promising biomaterials for controlled release and enzyme mimics. Acc Chem Res 46(7):1647

    Article  CAS  Google Scholar 

  268. Cao W, McCallum NC, Ni QZ, Li W, Boyce H, Mao H, Zhou X, Sun H, Thompson MP, Battistella C, Wasielewski MR, Dhinojwala A, Shawkey MD, Burkart MD, Wang Z, Gianneschi NC (2020) Selenomelanin: an abiotic selenium analogue of pheomelanin. J Am Chem Soc 142(29):12802

    Article  CAS  Google Scholar 

  269. Braga AL, Rafique J (2013) Synthesis of biologically relevant small molecules containing selenium. Part A. Antioxidant compounds, in PATAI’s Chemistry of Functional Groups. Wiley

    Google Scholar 

  270. (a) Kumar S, Kandasamy K, Singh HB, Wolmershuser G, Butcher RJ (2004) Chelate ring size effect on the reactivity of [2-(2-Phenyl-5,6-dihydro-4H-1,3-oxazinyl)]lithium and Se···N interactions in low-valent organoselenium compounds: facile isolation of diorganotriselenide. Organometallics 23(18):4199; (b) Press DJ (2013) The design and properties of organoselenium compounds with glutathione peroxidase-like activity. Thesis for PhD, University of Calgary, Canada; (c) Mukherjee AJ, Zade SS, Singh HB, Sunoj RB (2010) Organoselenium chemistry: role of intramolecular interactions. Chem Rev 110(7):4357

    Google Scholar 

  271. Schindler C, Schulzke C (2017) The unexpected formation of a triselenide from 4-methyl-5-tri-n-butylstannyl-1,3-dithiol-2-one and selenium dioxide. Inorg Chem Commun 77:80

    Article  CAS  Google Scholar 

  272. Münchberg U, Anwar A, Mecklenburg S, Jacob C (2007) Polysulfides as biologically active ingredients of garlic. Org Biomol Chem 5(10):1505

    Article  Google Scholar 

  273. Ahrika A, Robert J, Anoutia M, Paris J (2001) Characterization of organic polyselenide ions in N,N-dimethylacetamide. New J Chem 25:741

    Article  CAS  Google Scholar 

  274. Xu H, Gao J, Wang Y, Wang Z, Smet M, Dehaen W, Zhang X (2006) Hyperbranched polyselenides as glutathione peroxidase mimics. Chem Commun 7:796

    Google Scholar 

  275. Pyrzynska K (2002) Determination of selenium species in environmental samples. Mikrochim Acta 140:55

    Article  CAS  Google Scholar 

  276. (a) Glass RS, Singh WP, Jung W, Veres Z, Scholz TD, Stadtman TC (1993) Monoselenophosphate: Synthesis, characterization, and identity with the prokaryotic biological selenium donor, compound SePX. Biochemistry 32(12):12555; (b) Xu X-M, Carlson BA, Irons R, Mix H, Zhong N, Gladyshev VN, Hatfield DL (2007) Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis. Biochem J 404(Pt 1):115

    Google Scholar 

  277. Lobinski R, Edmonds JS, Suzuki KT, Uden PC (2000) Species-selective determination of selenium compounds in biological materials. Pure Appl Chem 72(3):447

    Article  CAS  Google Scholar 

  278. Srivastava M, Mallard C, Barke T, Hancock LE, Self WT (2011) A selenium-dependent xanthine dehydrogenase triggers biofilm proliferation in enterococcus faecalis through oxidant production. J Bacteriol 193(7):1643

    Google Scholar 

  279. Gad SC, Pham T (2014) Selenium. In: Encyclopedia of toxicology, 3rd ed, p 232

    Google Scholar 

  280. Féher F (1963) Sodium selenite. In: Brauer G (ed) Handbook of preparative inorganic chemistry, 2nd ed. Academic Press, New York, vol 1, p 432

    Google Scholar 

  281. Bjornberg A, Martensson US, Paulsson KM, (Boliden Aktiebolag) (1986) Method for producing selenium salts. US Patent 4, 605, 544, August 12

    Google Scholar 

  282. Verma P, Maheshwari SK (2018) Preparation of sliver and selenium nanoparticles and its characterization by dynamic light scattering and scanning electron microscopy. J Microsc Ultrastruct 6(4):182

    Google Scholar 

  283. (a) Cui Y, Abouimrane A, Sun C-J, Ren Y, Amine K (2014) Li–Se battery: absence of lithium polyselenides in carbonate based electrolyte. Chem Commun 50:5576; (b) Sharp KW, Koehler WH (1977) Synthesis and characterization of sodium polyselenides in liquid ammonia solution. Inorg Chem 16(9):2258

    Google Scholar 

  284. Rasche B, Amin HMA, Clarke SJ, Compton RG (2019) Polyselenides on the route to electrodeposited selenium. J Electroanal Chem 835:239

    Article  CAS  Google Scholar 

  285. (a) Page EM (1998) Reaction with alkali metal selenides, polyselenides, tellurides, and polytellurides. In: Zuckerman JJ, Norman AD (eds) Inorganic reactions and methods. Wiley-VCH Inc.; (b) Dhingra S, Kanatzidis MG (1990) The use of soluble metal-polyselenide complexes as precursors to binary and ternary solid metal selenides. MRS Online Proc Library 180:825

    Google Scholar 

  286. Wang Y-L, Feng M-L, Wang K-Y, Li J-R, Huang X-Y (2016) [Mn(dien)2]2[SbSe4Cu(μ2-Se4)]: A heterometallic polyselenide containing a chelating μ2-Se4. Inorg Chem Commun 72:141

    Article  CAS  Google Scholar 

  287. O’Neal SC, Kolis JW (1988) Convenient preparation and structures of selenometalates MoSe42-, WSe42- and MoSe92- from polyselenide anions and metal carbonyls. J Am Chem Soc 110(6):1971

    Article  CAS  Google Scholar 

  288. O’Neal SC, Pennigton WT, Kolis JW (1989) Reaction of transition metal carbonyls with soluble polyselenides: synthesis and structure of [(C6H5)4P]2[Re2(Se4)2(CO)6]. Can J Chem 67(1):1980

    Article  CAS  Google Scholar 

  289. (a) Herath Banda RM, Cusick J, Scudder ML, Craig DC, Dance IG (1989) Syntheses and structures of anionic metal polyselenide complexes [(C5H5)Mo(Se4)2] and [Sn(Se4)3]2, crystallized with Ph4P+. Polyhedron 8(15):1999; (b) Herath Banda RM, Cusick J, Scudder ML, Craig DC, Dance IG (1989) Syntheses and X-ray structures of molecular metal polyselenide complexes [M(Se4)2]2− M = Zn, Cd, Hg, Ni, Pb. Polyhedron 8(15):1995

    Google Scholar 

  290. Cuixia DU, Juan C, Menghe B (2019) Solvothermal syntheses and characterization of three one-dimension cadmium selenidoarsenates [Ni(1,2-dap)3][As2CdSe4], [Zn(1,2-dap)3][As2CdSe4] and [Ni(en)3][As2CdSe4]. Chem Res Chinese Universities 35(4):560

    Article  Google Scholar 

  291. (a) Pretsch E, Buhlmann P, Badertscher M (2009) Structure determination of organic compounds. Springer, Berlin, Heidelberg. ISBN 978-3-540-93809-5; (b) Mann BE (1988) Recent developments in NMR spectroscopy of organometallic compounds. Adv Organomet Chem 28:397; (c) Elyashberg M (2015) Identification and structure elucidation by NMR spectroscopy. Trends Anal Chem 69:88

    Google Scholar 

  292. (a) Wüthrich K (2001) The way to NMR structures of proteins. Nat Struct Mol Biol 8(11):923; (b) Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. PNAS 104(23):9615; (c) Driscoll PC (2013) Structure determination by NMR: overview. In: Roberts GCK (eds) Encyclopedia of biophysics. Springer, Berlin, Heidelberg

    Google Scholar 

  293. Harris RK, Mann BE (1978) NMR and periodic table. Academic Press, London

    Google Scholar 

  294. Odom JD, Dawson WH, Ellis PD (1979) Selenium-77 relaxation time studies on compounds of biological importance: dialkyl selenides, dialkyl diselenides, selenols, selenonium compounds, and seleno oxyacids. J Am Chem Soc 101(19):5815

    Article  CAS  Google Scholar 

  295. Duddeck H (1995) Selenium-77 nuclear magnetic resonance spectroscopy. Prog Nucl Magn Reson Spectrosc 27(1–3):1

    Article  CAS  Google Scholar 

  296. (a) Klapötke TM, Broschag M (1996) Compilation of reported 77Se NMR chemical shifts. Wiley, New York; (b) Duddeck H (2004) 77Se NMR spectroscopy and its applications in chemistry. Annu Rep NMR Spectrosc 52(51):105 (c) Demko BA, Wasylishen RE (2009) Solid-state selenium-77 NMR. Prog Nucl Magn Reson Spectrosc 54(3–4):208; (d) Panda A, Singh HB (2014) Chemistry of organic selenium and tellurium compounds. In: Rappoport Z (ed) Wiley, pp 277–445

    Google Scholar 

  297. Llabrès G, Baiwir M, Piette JL, Christiaens L (1981) 77Se, 13C and 1H NMR investigations on ortho-carbonyl benzeneselenenyl derivatives. Org Magn Reson 15(2):152

    Article  Google Scholar 

  298. Irgolic KJ, Knapp FF Jr., (1983) Tellurium-125 and selenium-77 NMR shifts for symmetric and unsymmetric diorganyl chalcogenides. Organometallics 2(2):305

    Article  CAS  Google Scholar 

  299. Dowd D, Gettins P (1988) Model compounds for the active site selenocysteine of glutathione peroxidase: A 77Se NMR study. Magn Reson Chem 26:1

    Article  CAS  Google Scholar 

  300. Tan KS, Arnold AP, Rabenstein DL (1988) Selenium-77 nuclear magnetic resonance studies of selenols, diselenides, and selenenyl sulfides. Can J Chem 66(1):54

    Article  CAS  Google Scholar 

  301. Iwaoka M, Tomoda S (1994) A model study on the effect of an amino group on the antioxidant activity of glutathione peroxidase. J Am Chem Soc 116(6)(6):2557; (b) Komatsu H, Iwaoka M, Tomoda S (1999) Intramolecular non-bonded interaction between selenium and oxygen as revealed by 17O and 77Se NMR spectroscopy and natural bond orbital analysis. Chem Commun 205

    Google Scholar 

  302. (a) Iwaoka M, Tomoda S (2005) Physical- and bio-organic chemistry of nonbonded selenium· · ·oxygen interactions. Phosphorus, Sulfur, Silicon Relat Elem 180(3–4):755; (b) Hayashi S, Nakanishi W (2013) Hypervalent chalcogen compounds. In: Devillanova FA, Du Mont WW (eds) Handbook of chalcogen chemistry: new perspectives in sulfur, selenium and tellurium. RSC Publishing

    Google Scholar 

  303. Liu J, Rozovsky S (2016) 77Se NMR spectroscopy of selenoproteins. In: Hatfield DL, Berry MJ, Gladyshev VN (eds) Selenium in molecular biology & human health. Springer, p 187

    Google Scholar 

  304. House KL, Dunlap RB, Odom JD, Wu ZP, Hilvert D (1992) Structural characterization of selenosubtilisin by selenium-77 NMR spectroscopy. J Am Chem Soc 114(22):8573

    Article  CAS  Google Scholar 

  305. Prabhu P, Singh BG, Noguchi M, Phadnis PP, Jain VK, Iwaoka M, Priyadarsini KI (2014) Stable selones in Glutathione-peroxidase-like catalytic cycle of selenonicotinamide derivative. Org Biomol Chem 12(15):2404

    Article  CAS  Google Scholar 

  306. Jain VK (2017) An overview of organoselenium chemistry: from fundamentals to synthesis (Chap. 1). In: Organoselenium compounds in biology and medicine: synthesis, biological and therapeutic treatments, pp 1–33. eISBN: 978-1-78801-190-7

    Google Scholar 

  307. Gross JH (2004) Mass spectrometry, a textbook. Springer, Berlin, Heidelberg

    Google Scholar 

  308. (a) Yamashita Y, Yamashita M (2010) Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna. J Biol Chem 285:18134; (b) Dernovics M, Far J, Lobinski R (2009) Identification of anionic selenium species in Se-rich yeast by electrospray QTOF MS/MS and hybrid linear ion trap/orbitrapMS. Metallomics. 7(4):317; (c) Schaefer SA, Dong M, Rubenstein RP, Wilkie WA, Bahnson BJ, Thorpe C, Rozovsky S (2012) (77)Se enrichment of proteins expands the biological NMR toolbox. J Mol Biol 425(2):222; (d) Haratake M, Hongoh M, Miyauchi M, Hirakawa R, Ono M, Nakayama M (2008) Albumin-mediated selenium transfer by a selenotrisulfide relay mechanism. Inorg Chem 47(14):6273

    Google Scholar 

  309. Clegg W (ed) (2009) Crystal structure analysis: principles and practice, In: Clegg W, Blake AJ, Cole JM, Evans JSO, Main P, Parsons S, Watkin DJ (Eds)2nd ed. Oxford University Press Inc., New York. ISBN 978-0-19-921946-9

    Google Scholar 

  310. Scimeca M, Bischetti S, Lamsira HK, Bonfiglio R, Bonanno E (2018) Energy dispersive X-ray (EDX) microanalysis: a powerful tool in biomedical research and diagnosis. Eur J Histochem 62(1):2841

    Google Scholar 

  311. Shamberger RJ (1983) Analytical methods of selenium determination. In: Biochemistry of selenium. Biochemistry of the elements, vol 2. Springer, Boston, MA, pp 311–327

    Google Scholar 

  312. Li F, Goessler W, Irgolic KJ (1999) Determination of selenium compounds by HPLC with ICP-MS or FAAS as selenium-specific detector. Chin J Chromatogr 17(3):240

    CAS  Google Scholar 

  313. Soruraddin MH, Heydari R, Puladv M, Zahedi MM (2011) A new spectrophotometric method for determination of selenium in cosmetic and pharmaceutical preparations after preconcentration with cloud point extraction. Int J Anal Chem 2011 Article ID 729651 (1–8)

    Google Scholar 

  314. (a) Chatterjee A, Tao H, Shibata Y, Morita M (2003) Determination of selenium compounds in urine by high-performance liquid chromatography–inductively coupled plasma mass spectrometry. J Chromatogr A 997(1–2):249; (b) Chandrasekaran K, Ranjit M, Arunachalam J (2009) Determination of inorganic selenium species [Se(IV) and Se(VI)] in tube well water samples in Punjab, India. Chem Spec Bioavailab 21(1):15–22

    Google Scholar 

  315. Viñas P, Pardo-Martínez M, Hernández-Córdoba M (2000) Rapid determination of selenium, lead and cadmium in baby food samples using electrothermal atomic absorption spectrometry and slurry atomization. Analytica Chimica Acta 412(1–2):121

    Google Scholar 

  316. Chan CCY, Sadana RS (1992) Determination of arsenic and selenium in environmental samples by flow-injection hydride generation atomic absorption spectrometry. Anal Chim Acta 270(1):231

    Article  CAS  Google Scholar 

  317. (a) Sanchez-Rodas D, Corns WT, Chen B, Stockwell PB (2010) Atomic fluorescence spectrometry: a suitable detection technique in speciation studies for arsenic, selenium, antimony and mercury. J Anal At Spectrom 25:933; (b) Cai Y (2000) Speciation and analysis of mercury, arsenic, and selenium by atomic fluorescence spectrometry. Trends Anal Chem 19(1):62

    Google Scholar 

  318. Lavi N, Mantel M, Alfassi ZB (1988) Determination of selenium in biological materials by neutron activation analysis. Analyst 113(12):1855

    Article  CAS  Google Scholar 

  319. (a) Paltridge NG, Milham PJ, Ortiz-Monasterio JI, Velu G, Yasmin Z, Palmer LJ, Guild GE, Stangoulis JCR (2012) Energy-dispersive X-ray fluorescence spectrometry as a tool for zinc, iron and selenium analysis in whole grain wheat. Plant Soil 361(1–2):261; (b) Cevik U, Akbulut S, Makarovska Y, Grieken RV (2013) Polarized-beam high-energy EDXRF in geological samples. Spectroscopy Lett 46(1):36; (c) Oyedotun TDT (2018) X-ray fluorescence (XRF) in the investigation of the composition of earth materials: a review and an overview. Geol Ecol Landsc 2(2):148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad P. Phadnis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phadnis, P.P. (2021). Synthesis Strategies for Organoselenium Compounds and Their Potential Applications in Human Life. In: Tyagi, A.K., Ningthoujam, R.S. (eds) Handbook on Synthesis Strategies for Advanced Materials. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-1892-5_13

Download citation

Publish with us

Policies and ethics