Skip to main content

Bionanocomposite of Ag Nanoparticles/Jute Fibers as an Efficient Fungi-Free Material for the Automobile Industry

  • Chapter
  • First Online:
Vegetable Fiber Composites and their Technological Applications

Abstract

Nowadays, the growth of Aspergillus fumigatus in jute fibers (natural polymer fibers) that are used in combination with polymeric materials, such as polypropylene, is a significant problem in the automotive industry, since this material is used in the manufacture of panels that work as substrates or structural reinforcements in car components. Silver nanoparticles (AgNPs) have demonstrated to possess unique optical and catalytic properties, in addition, they exhibit excellent antimicrobial and antifungal properties. Even though there are chemical and physical methods of synthesis for noble metal nanoparticles, silver nanoparticles were formed through a biological green methodology, using an aqueous extract of Heterotheca inuloides (Mexican arnica), as the bioreducing agent, and AgNO3 as the source of the silver ions. Thus, AgNPs were deposited in the jute fibers by immersion, generating consequently a bionanocomposite. SEM, EDX, TEM, UV–Vis and XPS characterization techniques have been used to confirm the formation, morphology, crystalline phase, and chemical composition of the AgNPs and the nanocomposite. This novel AgNPs/jute fibers bionanocomposite exhibited excellent antifungal activity against Aspergillus fumigatus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martín Villa F (2018) Aplicaciones de la nanotecnología en la industria textil

    Google Scholar 

  2. Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G (2014) Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Metals 2014

    Google Scholar 

  3. Fages Santana E. Investigación de fibras de polipropileno aditivadas con nanopartículas de plata para la mejora de propiedades bioactivas en el sector textil. 2013.

    Google Scholar 

  4. Smiechowicz E, Kulpinski P, Niekraszewicz B, Bacciarelli A (2011) Cellulose fibers modified with silver nanoparticles. Cellulose 18(4):975–985

    Article  CAS  Google Scholar 

  5. Jaimes Cote LF (2015) Sintesis De Un Biocomposito De Microfibrillas De Celulosa, Provenientes De Bagazo/Estopa De Fique, Y Nanopartículas De Óxido De Zinc Y Estudio De Sus Propiedades Antibacteriales. Universidad Industrial de Santander, Escuela De Quimica

    Google Scholar 

  6. Rangari VK, Mohammad GM, Jeelani S, Hundley A, Vig K, Singh SR et al (2010) Synthesis of Ag/CNT hybrid nanoparticles and fabrication of their nylon-6 polymer nanocomposite fibers for antimicrobial applications. Nanotechnology 21(9):095102

    Article  Google Scholar 

  7. Zheng Y, Miao J, Maeda N, Frey D, Linhardt RJ, Simmons TJ (2014) Uniform nanoparticle coating of cellulose fibers during wet electrospinning. J Mater Chem A 2(36):15029–15034

    Article  CAS  Google Scholar 

  8. Martins NC, Freire CS, Pinto RJ, Fernandes SC, Neto CP, Silvestre AJ et al (2012) Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 19(4):1425–1436

    Article  CAS  Google Scholar 

  9. Li S-M, Fu L-H, Ma M-G, Zhu J-F, Sun R-C, Xu F (2012) Simultaneous microwave-assisted synthesis, characterization, thermal stability, and antimicrobial activity of cellulose/AgCl nanocomposites. Biomass Bioenergy 47:516–521

    Google Scholar 

  10. Hebeish A, El-Naggar M, Fouda MM, Ramadan M, Al-Deyab SS, El-Rafie M (2011) Highly effective antibacterial textiles containing green synthesized silver nanoparticles. Carbohyd Polym 86(2):936–940

    Article  CAS  Google Scholar 

  11. Sobczak-Kupiec A, Malina D, Wzorek Z, Zimowska M (2011) Influence of silver nitrate concentration on the properties of silver nanoparticles. Micro Nano Lett 6(8):656–660

    Article  CAS  Google Scholar 

  12. Song KC, Lee SM, Park TS, Lee BS (2009) Preparation of colloidal silver nanoparticles by chemical reduction method. Korean J Chem Eng 26(1):153–155

    Article  CAS  Google Scholar 

  13. Vala A, Chudasama B, Patel R (2012) Green synthesis of silver nanoparticles using marine-derived fungus Aspergillus niger. Micro Nano Lett 7(8):859–862

    Article  Google Scholar 

  14. Meshram SM, Bonde SR, Gupta IR, Gade AK, Rai MK (2013) Green synthesis of silver nanoparticles using white sugar. IET Nanobiotechnol 7(1):28–32

    Article  CAS  Google Scholar 

  15. Delgado G, del Socorro OM, Chávez MI, Ramírez-Apan T, Linares E, Bye R et al (2001) Antiinflammatory constituents from Heterotheca inuloides. J Nat Prod 64(7):861–864

    Article  CAS  Google Scholar 

  16. Muñoz-Velázquez EE, Rivas-Díaz K, Loarca-Piña M, Flavia G, Mendoza-Díaz S, Reynoso-Camacho R et al (2012) Comparación del contenido fenólico, capacidad antioxidante y actividad antiinflamatoria de infusiones herbales comerciales. Revista mexicana de ciencias agrícolas. 3(3):481–495

    Article  Google Scholar 

  17. Nasrollahi A, Pourshamsian K, Mansourkiaee P (2011) Antifungal activity of silver nanoparticles on some of fungi. Int J Nano Dimension 1(3):233

    CAS  Google Scholar 

  18. Noorbakhsh F, Rezaie S, Shahverdi AR (2011) Antifungal effects of silver nanoparticle alone and with combination of antifungal drug on dermatophyte pathogen Trichophyton rubrum. In: International conference on bioscience, biochemistry and bioinformatics, pp 364–367

    Google Scholar 

  19. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  CAS  Google Scholar 

  20. Daima HK, Selvakannan P, Homan Z, Bhargava SK, Bansal V (2011) Tyrosine mediated gold, silver and their alloy nanoparticles synthesis: antibacterial activity toward gram positive and gram negative bacterial strains. In: 2011 International conference on nanoscience, technology and societal implications. IEEE, pp 1–6

    Google Scholar 

  21. Organización de las Naciones Unidas para la Alimentación y la Agricultura FdF, FAO (2015)

    Google Scholar 

  22. Cantón E, Martín E, Espinel-Ingroff A (2007) Métodos estandarizados por el CLSI para el estudio de la sensibilidad a los antifúngicos (documentos M27-A3, M38-A y M44-A). Revista Iberoamericana de Micología 15

    Google Scholar 

  23. Abarca ML (2000) Taxonomía e identificación de especies implicadas en la aspergilosis nosocomial. Rev Iberoam Micol 17(3):S79–S84

    CAS  Google Scholar 

  24. Lokina S, Stephen VN (2011) Synthesis of silver nanoparticles using Cynodon dactylon plant extract and evaluation of their antimicrobial activities and cytotoxicity. In: International conference on green technology and environmental conservation (GTEC-2011). IEEE, pp 205–211

    Google Scholar 

  25. Yang N, Li W-H (2013) Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Ind Crops Prod 48:81–88

    Article  CAS  Google Scholar 

  26. Feng N, Guo X, Liang S (2009) Adsorption study of copper (II) by chemically modified orange peel. J Hazard Mater 164(2–3):1286–1292

    Article  CAS  Google Scholar 

  27. Sunkar S, Nachiyar CV (2011) Green synthesis of silver nanoparticles using Bacillus cereus, an endophytic bacterium isolated from Garcinia xanthochymus. In: International conference on nanoscience, engineering and technology (ICONSET 2011). IEEE, pp 381–385

    Google Scholar 

  28. López Iturbe J, Vilchis Nestor AR, Sánchez Mendieta V, Avalos BM (2013) Obtención y caracterización de nanopartículas de plata soportadas en fibra de algodón. Superficies y vacío 26(3):73–78

    Google Scholar 

  29. Song J, Liang J, Liu X, Krause WE, Hinestroza JP, Rojas OJ (2009) Development and characterization of thin polymer films relevant to fiber processing. Thin Solid Films 517(15):4348–4354

    Article  CAS  Google Scholar 

  30. Hyde K, Dong H, Hinestroza JP (2007) Effect of surface cationization on the conformal deposition of polyelectrolytes over cotton fibers. Cellulose 14(6):615–623

    Article  CAS  Google Scholar 

  31. Oroz MM (2009) Nanopartículas de plata: métodos de síntesis en disolución y propiedades bactericidas. Anales de la Real Sociedad Española de Química: Real Sociedad Española de Química, pp 33–41

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Gustavo López-Téllez (CCIQS, Universidad Autónoma del Estado de México) for assistance in XPS studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl A. Morales-Luckie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morales-Luckie, R.A., Palacios-Lozano, S.L., Sánchez-Mendieta, V., Olea-Mejia, O.F., González-Pedroza, M.G. (2021). Bionanocomposite of Ag Nanoparticles/Jute Fibers as an Efficient Fungi-Free Material for the Automobile Industry. In: Jawaid, M., Khan, A. (eds) Vegetable Fiber Composites and their Technological Applications. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-1854-3_14

Download citation

Publish with us

Policies and ethics