Skip to main content

Application of Cold Plasma in Cereals and Grains Food

  • Chapter
  • First Online:
Applications of Cold Plasma in Food Safety
  • 875 Accesses

Abstract

Cold plasma is an emerging green processing technology which can produce several active species such as electrons, free radicals, ions (positive and negative), excited atoms, neutral atoms, and UV photons. Because the plasma itself is chemical free, nontoxic, environmentally friendly, it draws more attention in food industry, including the field of cereals and grains food. This chapter introduces the influences of cold plasma treatment on the sensory and safety quality, enzyme activity changes, germination, and edible quality of cereal grains. The effects of cold plasma on the textural properties, water content, microbial and pesticide residues, cooking time, germination, water absorption, γ-aminobutyric acid (GABA) content, enzyme activity of cereal grains were emphatically discussed. In general, cold plasma treatment has a positive effect on cereals and grains food. The feasibility of the application of cold plasma technology in cereals and grains food industry was analyzed, then summarized and prospected its future development in the field of cereals and grains food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeghate E, Ponery AS (2002) GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell 34(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Ando A, Nakamura T (2016) Prevention of GABA reduction during dough fermentation using a baker’s yeast dal81 mutant. J Biosci Bioeng 122(4):441–445

    Article  CAS  PubMed  Google Scholar 

  • Andrawis A, Kahn V (1985) Inactivation of mushroom tyrosinase by hydrogen peroxide. Phytochemistry 24(3):397–405

    Article  CAS  Google Scholar 

  • Bai Y, Chen J, Mu H et al (2009) Reduction of dichlorvos and omethoate residues by O2 plasma treatment. J Agric Food Chem 57(14):6238–6245

    Article  CAS  PubMed  Google Scholar 

  • Banura S, Thirumdas R, Kaur A et al (2018) Modification of starch using low pressure radio frequency air plasma. LWT 89:719–724

    Article  CAS  Google Scholar 

  • Bullerman LB, Bianchini A (2009) Food safety issues and the microbiology of cereals and cereal products. In: Heredia N, Wesley I, Garciaıa S (eds) Microbiologically safe foods. Wiley, Hoboken, NJ, pp 315–335

    Chapter  Google Scholar 

  • Bußler S, Ehlbeck J, Schlüter OK (2017) Pre-drying treatment of plant related tissues using plasma processed air: impact on enzyme activity and quality attributes of cut apple and potato. Innov Food Sci Emerg 40:78–86

    Article  Google Scholar 

  • Chen HH, Chen YK, Chang HC (2012) Evaluation of physicochemical properties of plasma treated brown rice. Food Chem 135(1):74–79

    Article  CAS  Google Scholar 

  • Chen HH, Chang HC, Chen YK et al (2016) An improved process for high nutrition of germinated brown rice production: low-pressure plasma. Food Chem 191:120–127

    Article  CAS  PubMed  Google Scholar 

  • Chizoba Ekezie FG, Sun DW et al (2017) A review on recent advances in cold plasma technology for the food industry: current applications and future trends. Trends Food Sci Technol 69:46–58

    Article  CAS  Google Scholar 

  • Dasa BG, Boyaci IH, Mutlu M (2017) Nonthermal plasma treatment of Aspergillus spp. spores on hazelnuts in an atmospheric pressure fluidized bed plasma system: impact of process parameters and surveillance of the residual viability of spores. J Food Eng 196:139–149

    Article  Google Scholar 

  • Dhayal M, Lee SY, Park SU (2006) Using low-pressure plasma for Carthamus tinctorium L. seed surface modification. Vacuum 80(5):499–506

    Article  CAS  Google Scholar 

  • Dobrin D, Magureanu M, Mandache NB et al (2015) The effect of non-thermal plasma treatment on wheat germination and early growth. Innov Food Sci Emerg 29:255–260

    Article  CAS  Google Scholar 

  • Gani A, Gazanfar T, Jan R et al (2013) Effect of gamma irradiation on the physicochemical and morphological properties of starch extracted from lotus stem harvested from Dal lake of Jammu and Kashmir, India. J Saudi Soc Agric Sci 12(2):109–115

    Google Scholar 

  • Gao S, Liu H, Sun L et al (2019) The effects of dielectric barrier discharge plasma on physicochemical and digestion properties of starch. Int J Biol Macromol 138:819–830

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Cheng JH, Sun DW (2019) Activities and conformation changes of food enzymes induced by cold plasma: a review. Crit Rev Food Sci Nutr 59(5):794–811

    Article  CAS  PubMed  Google Scholar 

  • Henselová M, Slováková Ľ, Martinka M et al (2012) Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia 67(3):490–497

    Article  Google Scholar 

  • Hocking AD (2003) Microbiological facts and fictions in grain storage ochratoxin A. In: Wright EJ, Webb MC, Highley E (eds) Proceedings of the Australian postharvest technical conference. CSIRO, Canberra, pp 25–27

    Google Scholar 

  • Ito S, Ishikawa Y (2004) Marketing of value-added rice products in Japan: germinated brown rice and rice bread. FAO rice conference 04/CRS.7. FAO, Rome, Italy

    Google Scholar 

  • Karaca H, Velioglu YS (2007) Ozone applications in fruit and vegetable processing. Food Rev Int 23(1):91–106

    Article  CAS  Google Scholar 

  • Katiyo W, Yang R, Zhao W et al (2014) Optimization of combined pulsed electric fields and mild temperature processing conditions for red apple juice polyphenol oxidase and peroxidase inactivation. Adv J Food Sci Technol 6(5):638–646

    Article  CAS  Google Scholar 

  • Khorram S, Zakerhamidi MS, Karimzadeh Z (2015) Polarity functions’ characterization and the mechanism of starch modification by DC glow discharge plasma. Carbohydr Polym 127:72–78

    Article  CAS  PubMed  Google Scholar 

  • Kim HY, Hwang IG, Kim TM et al (2012) Chemical and functional components in different parts of rough rice (Oryza sativa L.) before and after germination. Food Chem 134(1):288–293

    Article  CAS  Google Scholar 

  • Laca A, Mousia Z, Dı́az M et al (2006) Distribution of microbial contamination within cereal grains. J Food Eng 72(4):332–338

    Article  Google Scholar 

  • Lee KH, Kim HJ, Woo KS et al (2016) Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT 73:442–447

    Article  CAS  Google Scholar 

  • Li L, Li J, Shen M et al (2016) Improving seed germination and peanut yields by cold plasma treatment. Plasma Sci Technol 18(10):1027–1033

    Article  CAS  Google Scholar 

  • Lii C y, Stobinski L, Tomasik P (2002) Behaviour of granular starches in low-pressure glow plasma. Carbohydr Polym 49(4):499–507

    Article  CAS  Google Scholar 

  • Los A, Ziuzina D, Boehm D et al (2017) The potential of atmospheric air cold plasma for control of bacterial contaminants relevant to cereal grain production. Innov Food Sci Emerg Technol 44:36–45

    Article  CAS  Google Scholar 

  • Los A, Ziuzina D, Bourke P (2018) Current and future technologies for microbiological decontamination of cereal grains. J Food Sci 83(6):1484–1493

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Muhammad NM, Yan W et al (2020) Effects of dielectric barrier discharge cold plasma treatment on the structure and binding capacity of aroma compounds of myofibrillar proteins from dry-cured bacon. LWT 117:108606

    Article  CAS  Google Scholar 

  • McDonald MB (1994) Seed germination and seedling establishment. In: Boote KJ, Bennett JM, Sinclair TR, Paulsen GM (eds) Physiology and determination of crop yield. Crop Science Society America, Madison, WI, pp 37–60

    Google Scholar 

  • Misra NN (2015) The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trends Food Sci Technol 45(2):229–244

    Article  CAS  Google Scholar 

  • Misra NN, Kaur S, Tiwari BK et al (2015) Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocoll 44:115–121

    Article  CAS  Google Scholar 

  • Muranyi P, Wunderlich J, Langowski HC (2010) Modification of bacterial structures by a low-temperature gas plasma and influence on packaging material. J Appl Microbiol 109(6):1875–1885

    Article  CAS  PubMed  Google Scholar 

  • Okyere AY, Bertoft E, Annor GA (2019) Modification of cereal and tuber waxy starches with radio frequency cold plasma and its effects on waxy starch properties. Carbohydr Polym 223:115075

    Article  CAS  PubMed  Google Scholar 

  • Ong MH, Blanshard MV (1995) Texture determinants of cooked, parboiled rice. II: Physicochemical properties and leaching behaviour of rice. J Cereal Sci 21(3):261–269

    Article  CAS  Google Scholar 

  • Pollak J, Moisan M, Kéroack D, Boudam MK (2008) Low-temperature, low damage sterilization based on UV radiation through plasma immersion. J Phys D Appl Phys 41:135212. (14pp)

    Article  Google Scholar 

  • Prinsze C, Dubbelman TMAR, Van Steveninck J (1990) Protein damage induced by small amounts of photodynamically generated singlet oxygen or hydroxyl radicals. Biochim Biophys Acta 1038:152–157

    Article  CAS  PubMed  Google Scholar 

  • Rewthong O, Soponronnarit S, Taechapairoj C et al (2011) Effects of cooking, drying and pretreatment methods on texture and starch digestibility of instant rice. J Food Eng 103(3):258–264

    Article  Google Scholar 

  • Sarangapani C, Devi Y, Thirundas R et al (2015) Effect of low-pressure plasma on physico-chemical properties of parboiled rice. LWT 63(1):452–460

    Article  CAS  Google Scholar 

  • Sarangapani C, Misra NN, Milosavljevic V et al (2016) Pesticide degradation in water using atmospheric air cold plasma. J Water Process Eng 9:225–232

    Article  Google Scholar 

  • Sarangapani C, Yamuna DR, Thirumdas R et al (2017) Physico-chemical properties of low-pressure plasma treated black gram. LWT 79:102–110

    Article  CAS  Google Scholar 

  • Sera B, Stranak V, Sery M et al (2008) Germination of Chenopodium album in response to microwave plasma treatment. Plasma Sci Technol 10(4):506–511

    Article  CAS  Google Scholar 

  • Sivachandiran L, Khacef A (2017) Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv 7(4):1822–1832

    Article  CAS  Google Scholar 

  • Sureshkumar A, Sankar R, Mandal M (2010) Effective bacterial inactivation using low temperature radio frequency plasma. Int J Pharm 396(1–2):17–22

    Article  CAS  PubMed  Google Scholar 

  • Surowsky B, Fischer A, Schlueter O (2013) Cold plasma effects on enzyme activity in a model food system. Innovative Food Sci Emerg Technol 19:146–152

    Article  CAS  Google Scholar 

  • Thirumdas R, Deshmukh RR, Annapure US (2015) Effect of low temperature plasma processing on physicochemical properties and cooking quality of basmati rice. Innovative Food Sci Emerg Technol 31:83–90

    Article  CAS  Google Scholar 

  • Thirumdas R, Saragapani C, Ajinkya MT et al (2016) Influence of low pressure cold plasma on cooking and textural properties of brown rice. Innovative Food Sci Emerg Technol 37:53–60

    Article  CAS  Google Scholar 

  • Thirumdas R, Trimukhe A, Deshmukh RR et al (2017) Functional and rheological properties of cold plasma treated rice starch. Carbohydr Polym 157:1723–1731

    Article  CAS  PubMed  Google Scholar 

  • Thomas-Popo E, Mendonça A, Misra NN et al (2019) Inactivation of Shiga-toxin-producing Escherichia coli, Salmonella enterica and natural microflora on tempered wheat grains by atmospheric cold plasma. Food Control 104:231–239

    Article  CAS  Google Scholar 

  • Tolouie H, Mohammadifar MA, Ghomi H et al (2018) The impact of atmospheric cold plasma treatment on inactivation of lipase and lipoxygenase of wheat germs. Innov Food Sci Emerg Technol 47:346–352

    Article  CAS  Google Scholar 

  • Volin JC, Denes FS, Young RA et al (2000) Modification of seed germination performance through cold plasma chemistry technology. Crop Sci 40(6):1706–1718

    Article  CAS  Google Scholar 

  • Wang HF, Tsai YS, Lin ML et al (2006) Comparison of bioactive components in GABA tea and green tea produced in Taiwan. Food Chem 96(4):648–653

    Article  CAS  Google Scholar 

  • Wu TY, Chang CR, Chang TJ et al (2019) Changes in physicochemical properties of corn starch upon modifications by atmospheric pressure plasma jet. Food Chem 283:46–51

    Article  CAS  PubMed  Google Scholar 

  • Zahoranová A, Henselová M, Hudecová D et al (2015) Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem Plasma Process 36(2):397–414

    Article  Google Scholar 

  • Zargarchi S, Saremnezhad S (2019) Gamma-aminobutyric acid, phenolics and antioxidant capacity of germinated indica paddy rice as affected by low-pressure plasma treatment. LWT 102:291–294

    Article  CAS  Google Scholar 

  • Zhang Y, Xiao Z, Chen F et al (2010) Degradation behavior and products of malathion and chlorpyrifos spiked in apple juice by ultrasonic treatment. Ultrason Sonochem 17(1):72–77

    Article  CAS  PubMed  Google Scholar 

  • Zhong K, Wu J, Wang Z et al (2007) Inactivation kinetics and secondary structural change of PEF-treated POD and PPO. Food Chem 100(1):115–123

    Article  CAS  Google Scholar 

  • Ziuzina D, Han L, Cullen PJ et al (2015) Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli. Int J Food Microbiol 210:53–61

    Article  PubMed  Google Scholar 

  • Zou JJ, Liu CJ, Eliasson B (2004) Modification of starch by glow discharge plasma. Carbohydr Polym 55(1):23–26

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Zhejiang University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, J. (2022). Application of Cold Plasma in Cereals and Grains Food. In: Ding, T., Cullen, P., Yan, W. (eds) Applications of Cold Plasma in Food Safety. Springer, Singapore. https://doi.org/10.1007/978-981-16-1827-7_8

Download citation

Publish with us

Policies and ethics