Skip to main content

Antibiofilm Application of Cold Plasma in Food Safety

  • Chapter
  • First Online:
Applications of Cold Plasma in Food Safety

Abstract

Biofilms are defined as aggregates of microorganisms encased in a matrix of extracellular polymeric substances that are attached to a surface. Biofilms can form quickly in food industry environments, which results in serious hygienic problems and significant economic losses. Over the past decade, cold plasma, as a novel nonthermal technology, has shown great potential for safe and sustainable food production, including food decontamination, shelf-life extension, removal of toxins, and degradation of pesticides. This chapter presents an overview of the application of cold plasma for inactivation of microbial biofilms in vitro or on food products in detail. The factors affected the antibiofilm efficacy of cold plasma are well reviewed, including the characteristics of plasma generation, processing parameters of cold plasma, properties of microbial biofilms, and characteristics of the tested samples. The synergistic effect of reactive species, charged particles, UV emission, and electromagnetic fields are responsible for the antibiofilm efficacy of cold plasma. In addition, the synergistic antibiofilm effects of cold plasma combined with other hurdle strategies (such as plant essential oils, disinfecting agents, and chelating agents) are also well reviewed. The perspectives, research needs, and challenges in applying cold plasma for biofilms control in food industry are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham NM, Lamlertthon S, Fowler VG et al (2012) Chelating agents exert distinct effects on biofilm formation in Staphylococcus aureus depending on strain background: role for clumping factor B. J Med Microbiol 61(Pt 8):1062–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alkawareek MY, Algwari QT, Laverty G et al (2012) Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma. PLoS One 7(8):e44289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Ordonez A, Coughlan LM, Briandet R et al (2019) Biofilms in food processing environments: challenges and opportunities. Annu Rev Food Sci Technol 10(1):173–195

    CAS  PubMed  Google Scholar 

  • Anzai K, Aoki T, Koshimizu S et al (2019) Formation of reactive oxygen species by irradiation of cold atmospheric pressure plasma jet to water depends on the irradiation distance. J Clin Biochem Nutr 64:187–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aviat F, Gerhards C, Rodriguez-Jerez JJ et al (2016) Microbial safety of wood in contact with food: a review. Comp Rev Food Sci Food Safety 15(3):491–505

    Google Scholar 

  • Banin E, Brady KM, Greenberg EP (2006) Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol 72(3):2064–2069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhide S, Salvi D, Schaffner DW et al (2017) Effect of surface roughness in model and fresh fruit systems on microbial inactivation efficacy of cold atmospheric pressure plasma. J Food Prot 80(8):1337–1346

    PubMed  Google Scholar 

  • Bosma JW, Siegert CEH, Peerbooms PGH et al (2010) Reduction of biofilm formation with trisodium citrate in haemodialysis catheters: a randomized controlled trial. Nephrol Dial Transplant 25(4):1213–1217

    CAS  PubMed  Google Scholar 

  • Bridier A, Briandet R, Thomas V et al (2011) Resistance of bacterial biofilms to disinfectants: a review. Biofouling 27(9):1017–1032

    CAS  PubMed  Google Scholar 

  • Bridier A, Sanchez-Vizuete P, Guilbaud M et al (2015) Biofilm-associated persistence of food-borne pathogens. Food Microbiol 45(Part B):167–178

    CAS  PubMed  Google Scholar 

  • Brun P, Bernabe G, Marchiori C et al (2018) Antibacterial efficacy and mechanisms of action of low power atmospheric pressure cold plasma: membrane permeability, biofilm penetration and antimicrobial sensitization. J Appl Microbiol 125(2):398–408

    CAS  PubMed  Google Scholar 

  • Burmolle M, Webb JS, Rao D et al (2006) Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol 72(6):3916–3923

    PubMed  PubMed Central  Google Scholar 

  • Chmielewski RA, Frank JF (2004) A predictive model for heat inactivation of Listeria monocytogenes biofilm on stainless steel. J Food Prot 67(12):2712–2718

    CAS  PubMed  Google Scholar 

  • Cui HY, Li W, Li CZ et al (2016a) Synergistic effect between Helichrysum italicum essential oil and cold nitrogen plasma against Staphylococcus aureus biofilms on different food-contact surfaces. Int J Food Sci Technol 51(11):2493–2501

    CAS  Google Scholar 

  • Cui HY, Ma CX, Lin L (2016b) Synergetic antibacterial efficacy of cold nitrogen plasma and clove oil against Escherichia coli O157:H7 biofilms on lettuce. Food Control 66:8–16

    CAS  Google Scholar 

  • Cui HY, Bai M, Yuan L et al (2018) Sequential effect of phages and cold nitrogen plasma against Escherichia coli O157:H7 biofilms on different vegetables. Int J Food Microbiol 268:1–9

    CAS  PubMed  Google Scholar 

  • Czapka T, Maliszewska I, Olesiak-Bańska J (2018) Influence of atmospheric pressure non-thermal plasma on inactivation of biofilm cells. Plasma Chem Plasma Process 38:1181–1197

    CAS  Google Scholar 

  • Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Castro ML, de Alencar FLS, Navoni JA et al (2019) Toxicological aspects of trihalomethanes: a systematic review. Environ Sci Pollut Res 26:5316–5332

    Google Scholar 

  • Delben JA, Zago CE, Tyhovych N et al (2016) Effect of atmospheric-pressure cold plasma on pathogenic oral biofilms and in vitro reconstituted oral epithelium. PLoS One 11(5):e0155427

    PubMed  PubMed Central  Google Scholar 

  • Deng SB, Ruan R, Mok CK et al (2007) Inactivation of Escherichia coli on almonds using nonthermal plasma. J Food Sci 72(2):62–66

    Google Scholar 

  • Di Martino P (2018) Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol 4(2):274–288

    PubMed  PubMed Central  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890

    PubMed  PubMed Central  Google Scholar 

  • Erriu M, Blus C, Szmukler-Moncler S et al (2014) Microbial biofilm modulation by ultrasound: current concepts and controversies. Ultrason Sonochem 21(1):15–22

    CAS  PubMed  Google Scholar 

  • Ferriol-González C, Domingo-Calap P (2020) Phages for biofilm removal. Antibiotics 9:268

    PubMed Central  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    CAS  PubMed  Google Scholar 

  • Flemming HC, Wingender J, Szewzyk U et al (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14(9):563–575

    CAS  PubMed  Google Scholar 

  • Flynn P, Busetti A, Wielogorska E et al (2016) Non-thermal plasma exposure rapidly attenuates bacterial AHL-dependent quorum sensing and virulence. Sci Rep 6:26320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fridman G, Brooks AD, Balasubramanian M et al (2007) Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Process Polym 4(4):370–375

    CAS  Google Scholar 

  • Furukawa S (2015) Studies on formation, control and application of biofilm formed by food related microorganisms. Biosci Biotechnol Biochem 79(7):1050–1056

    CAS  PubMed  Google Scholar 

  • Galié S, García-Gutiérrez C, Miguélez EM et al (2018) Biofilms in the food industry: health aspects and control methods. Front Microbiol 9:898

    PubMed  PubMed Central  Google Scholar 

  • Gilmore BF, Flynn PB, O’Brien S et al (2018) Cold plasmas for biofilm control: opportunities and challenges. Trends Biotechnol 36(6):627–638

    CAS  PubMed  Google Scholar 

  • Govaert M, Smet C, Baka M et al (2018) Resistance of L. monocytogenes and S. Typhimurium towards cold atmospheric plasma as function of biofilm age. Appl. Sci 8(12):2702

    CAS  Google Scholar 

  • Govaert M, Smet C, Vergauwen L et al (2019a) Influence of plasma characteristics on the efficacy of cold atmospheric plasma (CAP) for inactivation of Listeria monocytogenes and Salmonella Typhimurium biofilms. Innov Food Sci Emerg Technol 52:376–386

    CAS  Google Scholar 

  • Govaert M, Smet C, Verheyen D et al (2019b) Combined effect of cold atmospheric plasma and hydrogen peroxide treatment on mature Listeria monocytogenes and Salmonella Typhimurium biofilms. Front Microbiol 10:2674

    PubMed  PubMed Central  Google Scholar 

  • Govaert M, Smet C, Graeffe A et al (2020a) Inactivation of L. monocytogenes and S. Typhimurium biofilms by means of an air-based cold atmospheric plasma (CAP) system. Foods 9(2):157

    CAS  PubMed Central  Google Scholar 

  • Govaert M, Smet C, Walsh JL et al (2020b) Influence of plasma characteristics on the inactivation mechanism of cold atmospheric plasma (CAP) for Listeria monocytogenes and Salmonella Typhimurium biofilms. Appl Sci 10(9):3198

    CAS  Google Scholar 

  • Guillonneau R, Baraquet C, Bazire A et al (2018) Multispecies biofilm development of marine bacteria implies complex relationships through competition and synergy and modification of matrix components. Front Microbiol 9:1960

    PubMed  PubMed Central  Google Scholar 

  • Guo L, Xu RB, Zhao YM et al (2018) Gas plasma pre-treatment increases antibiotic sensitivity and persister eradication in methicillin-resistant Staphylococcus aureus. Front Microbiol 9:537

    PubMed  PubMed Central  Google Scholar 

  • Guo L, Xu RB, Liu DX et al (2019) Eradication of methicillin-resistant Staphylococcus aureus biofilms by surface discharge plasmas with various working gases. J Phys D Appl Phys 52(42):425202

    CAS  Google Scholar 

  • Gupta TT, Ayan H (2019) Application of non-thermal plasma on biofilm: a review. Appl Sci 9(17):3548

    CAS  Google Scholar 

  • Hähnel M, von Woedtke T, Weltmann KD (2010) Influence of the air humidity on the reduction of Bacillus spores in a defined environment at atmospheric pressure using a dielectric barrier surface discharge. Plasma Process Polym 7(3–4):244–249

    Google Scholar 

  • Han L, Patil S, Boehm D et al (2016a) Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl Environ Microbiol 82(2):450–458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han L, Ziuzina D, Heslin C et al (2016b) Controlling microbial safety challenges of meat using high voltage atmospheric cold plasma. Front Microbiol 7:977

    PubMed  PubMed Central  Google Scholar 

  • He MW, Duan JW, Xu JL et al (2020) Candida albicans biofilm inactivated by cold plasma treatment in vitro and in vivo. Plasma Process Polym 17(4):e1900068

    Google Scholar 

  • Helgadóttir S, Pandit S, Mokkapati VRSS et al (2017) Vitamin C pretreatment enhances the antibacterial effect of cold atmospheric plasma. Front Cell Infect Microbiol 7:43

    PubMed  PubMed Central  Google Scholar 

  • Hense BA, Schuster M (2015) Core principles of bacterial autoinducer systems. Microbiol Mol Biol Rev 79(1):153–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann HW, Henins I, Park J et al (1999) Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ). Phys Plasmas 6(5):2284–2289

    CAS  Google Scholar 

  • Hobley L, Harkins C, MacPhee CE et al (2015) Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev 39(5):649–669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann C, Berganza C, Zhang J (2013) Cold atmospheric plasma: methods of production and application in dentistry and oncology. Med Gas Res 3:21

    PubMed  PubMed Central  Google Scholar 

  • Hung YC, Waters BW, Yemmireddy VK et al (2017) pH effect on the formation of THM and HAA disinfection byproducts and potential control strategies for food processing. J Integr Agric 16(12):2914–2923

    CAS  Google Scholar 

  • Jahid IK, Ha SD (2014) The paradox of mixed-species biofilms in the context of food safety. Comp Rev Food Sci Food Safety 13(5):990–1011

    CAS  Google Scholar 

  • Jahid IK, Han N, Ha SD (2014) Inactivation kinetics of cold oxygen plasma depend on incubation conditions of Aeromonas hydrophila biofilm on lettuce. Food Res Int 55:181–189

    CAS  Google Scholar 

  • Jahid IK, Han N, Zhang CY et al (2015) Mixed culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce show enhanced resistance of their sessile cells to cold oxygen plasma. Food Microbiol 46:383–394

    CAS  PubMed  Google Scholar 

  • Ji W, Lee M, Kim G et al (2019) Quantitation of the ROS production in plasma and radiation treatments of biotargets. Sci Rep 9:19837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang S, Chen S, Zhang CF et al (2017) Effect of the biofilm age and starvation on acid tolerance of biofilm formed by Streptococcus mutans isolated from caries-active and caries-free adults. Int J Mol Sci 18(4):713

    PubMed Central  Google Scholar 

  • Joaquin JC, Kwan C, Abramzon N et al (2009) Is gas-discharge plasma a new solution to the old problem of biofilm inactivation? Microbiology 155(Pt 3):724–732

    CAS  PubMed  Google Scholar 

  • Joshi SG, Paff M, Friedman G et al (2010) Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: a biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. Am J Infect Control 38(4):293–301

    CAS  PubMed  Google Scholar 

  • Joshi SG, Cooper M, Yost A et al (2011) Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob Agents Chemother 55(3):1053–1062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Julák J, Vaňková E, Válková M et al (2020) Combination of non-thermal plasma and subsequent antibiotic treatment for biofilm re-development prevention. Folia Microbiol 65(5):863–869. https://doi.org/10.1007/s12223-020-00796-3

    Article  CAS  Google Scholar 

  • Karygianni L, Ren Z, Koo H et al (2020) Biofilm matrixome: Extracellular components in structured microbial communities. Trends Microbiol 28(8):668–681

    CAS  PubMed  Google Scholar 

  • Keidar M, Shashurin A, Volotskova O et al (2013) Cold atmospheric plasma in cancer therapy. Phys Plasmas 20(5):057101

    Google Scholar 

  • Koban I, Geisel MH, Holtfreter B et al (2013) Synergistic effects of nonthermal plasma and disinfecting agents against dental biofilms in vitro. ISRN Dent Article 2013:573262

    Google Scholar 

  • Kvam E, Davis B, Mondello F et al (2012) Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage. Antimicrob Agents Chemother 56(4):2028–2036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lackmann JW, Schneider S, Edengeiser E et al (2013) Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. J R Soc Interface 10(89):20130591

    PubMed  PubMed Central  Google Scholar 

  • Lacombe A, Niemira BA, Gurtler JB et al (2017) Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma. Food Micro 63:1–5

    CAS  Google Scholar 

  • Laroussi M (2002) Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. EEE Trans Plasma Sci 30(4):1409–1415

    CAS  Google Scholar 

  • Laroussi M (2005) Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Process Polym 2(5):391–400

    CAS  Google Scholar 

  • Laroussi M (2009) Low-temperature plasma for medicine? IEEE Trans Plasma Sci 37(6):714–725

    CAS  Google Scholar 

  • Laroussi M (2020) Cold plasma in medicine and healthcare: the new frontier in low temperature plasma applications. Front Phys. https://doi.org/10.3389/fphy.2020.00074

  • Laroussi M, Leipold F (2004) Evaluation of the roles of reactive species heat and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spectrom 233(1–3):81–86

    CAS  Google Scholar 

  • Lee JH, Lee J, Ryu SY et al (2016) Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus. Sci Rep 6:19267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao XY, Liu DH, Xiang QS et al (2017a) Inactivation mechanisms of non-thermal plasma on microbes: a review. Food Control 75:83–91

    CAS  Google Scholar 

  • Liao XY, Xiang QS, Liu DH et al (2017b) Lethal and sublethal effect of a dielectric barrier discharge atmospheric cold plasma on Staphylococcus aureus. J Food Prot 80(6):928–932

    PubMed  Google Scholar 

  • Liao XY, Cullen PJ, Muhammad AI et al (2020) Cold plasma-based hurdle interventions: new strategies for improving food safety. Food Eng Rev 12:321–332. https://doi.org/10.1007/s12393-020-09222-3

    Article  Google Scholar 

  • Los A, Ziuzina D, Boehm D et al (2017) The potential of atmospheric air cold plasma for control of bacterial contaminants relevant to cereal grain production. Innov Food Sci Emerg Technol 44:36–45

    CAS  Google Scholar 

  • Lu H, Patil S, Keener KM et al (2014) Bacterial inactivation by high-voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA. J Appl Microbiol 116(4):784–794

    CAS  PubMed  Google Scholar 

  • Mai-Prochnow A, Clauson M, Hong J et al (2016) Gram positive and gram negative bacteria differ in their sensitivity to cold plasma. Sci Rep 6:38610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majtan J, Sojka M, Palenikova H et al (2020) Vitamin C enhances the antibacterial activity of honey against planktonic and biofilm-embedded bacteria. Molecules 25(4):992

    CAS  PubMed Central  Google Scholar 

  • Marchal F, Robert H, Merbahi N et al (2012) Inactivation of gram-positive biofilms by low-temperature plasma jet at atmospheric pressure. J Phys D Appl Phys 45:345202

    Google Scholar 

  • Matthes R, Hübner NO, Bender C et al (2014) Efficacy of different carrier gases for barrier discharge plasma generation compared to chlorhexidine on the survival of Pseudomonas aeruginosa embedded in biofilm in vitro. Skin Pharmacol Physiol 27:148–157

    CAS  PubMed  Google Scholar 

  • Miquel S, Lagrafeuille R, Souweine B et al (2016) Anti-biofilm activity as a health issue. Front Microbiol 7:592

    PubMed  PubMed Central  Google Scholar 

  • Montie TC, Kelly-Wintenberg K, Roth JR (2000) An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans Plasma Sci 28(1):41–50

    Google Scholar 

  • Morris AD, McCombs GB, Akan T et al (2009) Bactericidal effects on Geobacillus stearothermophilus and Bacillus cereus microorganisms. J Dent Hyg 83(2):55–61

    PubMed  Google Scholar 

  • Muhammad MH, Idris AL, Fan X et al (2020) Beyond risk: bacterial biofilms and their regulating approaches. Front Microbiol 11:928

    PubMed  PubMed Central  Google Scholar 

  • Muro-Fraguas I, Sainz-García A, Gómez PF et al (2020) Atmospheric pressure cold plasma anti-biofilm coatings for 3D printed food tools. Innov Food Sci Emerg Technol 64:102404. https://doi.org/10.1016/j.ifset.2020.102404

    Article  CAS  Google Scholar 

  • Niedźwiedź I, Waśko A, Pawłat J et al (2019) The state of research on antimicrobial activity of cold plasma. Pol J Microbiol 68(2):153–164

    PubMed  PubMed Central  Google Scholar 

  • Niemira BA, Boyd G, Sites J (2014) Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella biofilms. J Food Sci 79(5):917–922

    Google Scholar 

  • Niemira BA, Boyd G, Sites J (2018) Cold plasma inactivation of Escherichia coli O157:H7 biofilms. Front Sustain Food Syst 2:UNSP 47

    Google Scholar 

  • Oh SY, Yun W, Lee JH et al (2017) Effects of essential oil (blended and single essential oils) on anti-biofilm formation of Salmonella and Escherichia coli. J Anim Sci Technol 59(2):1–5

    Google Scholar 

  • Paldrychová M, Vankova E, Scholtz V et al (2019) Effect of non-thermal plasma on AHL-dependent QS systems and biofilm formation in Pseudomonas aeruginosa: difference between non-hospital and clinical isolates. AIP Adv 9(5):055117

    Google Scholar 

  • Pan YY, Cheng JH, Sun DW (2019) Cold plasma-mediated treatments for shelf life extension of fresh produce: a review of recent research developments. Compr Rev Food Sci Food Saf 18(5):1312–1326

    PubMed  Google Scholar 

  • Pandit S, Mokkapati VR, Helgadóttir SH et al (2017a) Combination of cold atmospheric plasma and vitamin C effectively disrupts bacterial biofilms. Clin Microbiol 6:3

    Google Scholar 

  • Pandit S, Ravikumar V, Abdel-Haleem AM et al (2017b) Low concentrations of vitamin C reduce the synthesis of extracellular polymers and destabilize bacterial biofilms. Front Microbiol 8:2599

    PubMed  PubMed Central  Google Scholar 

  • Pankaj SK, Wan ZF, Keener KM (2018) Effects of cold plasma on food quality: a review. Foods 7(1):4

    PubMed Central  Google Scholar 

  • Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13(1):27–33

    CAS  PubMed  Google Scholar 

  • Patange A, Boehm D, Ziuzina D et al (2019) High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce. Int J Food Microbiol 293:137–145

    CAS  PubMed  Google Scholar 

  • Pina-Perez MC, Martinet D, Palacios-Gorba C et al (2020) Low-energy short-term cold atmospheric plasma: controlling the inactivation efficacy of bacterial spores in powders. Food Res Int 130:108921. https://doi.org/10.1016/j.foodres.2019.108921

    Article  CAS  PubMed  Google Scholar 

  • Polaska M, Sokolowska B (2019) Bacteriophages–a new hope or a huge problem in the food industry. AIMS Microbiol 5(4):324–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poulsen LV (1999) Microbial biofilm in food processing. LWT-Food Sci Technol 32(6):321–326

    CAS  Google Scholar 

  • Pu QK, Liu SJ, Huang H et al (2019) Sterilization effect of an atmospheric low temperature plasma jet on Candida albicans biofilm. J Sichuan Univ (Med Sci Ed) 50(3):339–343

    Google Scholar 

  • Puligundla P, Mok C (2017) Potential applications of nonthermal plasmas against biofilm-associated micro-organisms in vitro. J Appl Microbiol 122(5):1134–1148

    CAS  PubMed  Google Scholar 

  • Rao YF, Shang WL, Yang Y et al (2020) Fighting mixed-species microbial biofilms with cold atmospheric plasma. Front Microbiol 11:1000

    PubMed  PubMed Central  Google Scholar 

  • Rowan N, Espie S, Harrower J et al (2007) Evidence of lethal and sublethal injury in food-borne bacterial pathogens exposed to high-intensity pulsed-plasma gas discharges. Lett App Microbiol 46(1):80–86

    Google Scholar 

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2(11):a012427

    PubMed  PubMed Central  Google Scholar 

  • Saad M, Ong MHA, Osman NS et al (2019) Food contact surfaces’ hidden secrets and food handlers’ state of readiness. Asian J Qual Life 4(16):1–15

    Google Scholar 

  • Sadekuzzaman M, Yang S, Mizan MFR et al (2015) Current and recent advanced strategies for combating biofilms. Compr Rev Food Sci Food Safety 14(4):491–509

    Google Scholar 

  • Sakudo A, Yagyu Y, Onodera T (2019) Disinfection and sterilization using plasma technology: fundamentals and future perspectives for biological applications. Int J Mol Sci 20(20):5216

    CAS  PubMed Central  Google Scholar 

  • Sanchez-Vizuete P, Orgaz B, Aymerich S et al (2015) Pathogens protection against the action of disinfectants in multispecies biofilms. Front Microbiol 6:705

    PubMed  PubMed Central  Google Scholar 

  • Schneider S, Lackmann JW, Narberhaus F et al (2011) Separation of VUV/UV photons and reactive particles in the effluent of a He/O2 atmospheric pressure plasma jet. Plasma Phys 44(29):295201

    Google Scholar 

  • Šimoncicová J, Kryštofová S, Medvecká V et al (2019) Technical applications of plasma treatments: current state and perspectives. Appl Microbiol Biotechnol 103:5117–5129

    PubMed  Google Scholar 

  • Soares JA, Roque de Carvalho MA et al (2010) Effectiveness of chemomechanical preparation with alternating use of sodium hypochlorite and EDTA in eliminating intracanal Enterococcus faecalis biofilm. J Endod 36(5):894–898

    PubMed  Google Scholar 

  • Srey S, Jahid IK, Ha SD (2013) Biofilm formation in food industries: a food safety concern. Food Control 31(2):572–585

    Google Scholar 

  • Srey S, Park SY, Jahid IK et al (2014) Reduction effect of the selected chemical and physical treatments to reduce L. monocytogenes biofilms formed on lettuce and cabbage. Food Res Int 62:484–491

    CAS  Google Scholar 

  • Stoffels E, Sakiyama Y, Graves DB (2008) Cold atmospheric plasma: charged species and their interactions with cells and tissues. IEEE Trans Plasma Sci 36(4):1441–1457

    CAS  Google Scholar 

  • Stringer SC, George SM, Peck MW (2000) Thermal inactivation of Escherichia coli O157:H7. J Appl Microbiol 88(S1):79–89

    Google Scholar 

  • Taghizadeh L, Brackman G, Nikiforov A (2015) Inactivation of biofilms using a low power atmospheric pressure argon plasma jet; the role of entrained nitrogen. Plasma Process Polym 12:75–81

    CAS  Google Scholar 

  • Tajkarimi M, Ibrahim SA (2011) Antimicrobial activity of ascorbic acid alone or in combination with lactic acid on Escherichia coli O157:H7 in laboratory medium and carrot juice. Food Control 22(6):801–804

    CAS  Google Scholar 

  • Tariq S, Wani S, Rasool W et al (2019) A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb Pathog 134:103580. https://doi.org/10.1016/j.micpath.2019.103580

    Article  CAS  PubMed  Google Scholar 

  • Theinkom F, Singer L, Cieplik F et al (2019) Antibacterial efficacy of cold atmospheric plasma against Enterococcus faecalis planktonic cultures and biofilms in vitro. PLoS One 14(11):e0223925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timoshnikov VA, Kobzeva TV, Polyakov NE et al (2020) Redox interactions of vitamin C and iron: inhibition of the pro-oxidant activity by deferiprone. Int J Mol Sci 21:3967

    CAS  PubMed Central  Google Scholar 

  • Tschang CYT, Thoma M (2019) Biofilm inactivation by synergistic treatment of atmospheric pressure plasma and chelating agents. Clin Plasma Med 15:UNSP 100091

    Google Scholar 

  • Vandervoort KG, Brelles-Marino G (2014) Plasma-mediated inactivation of Pseudomonas aeruginosa biofilms grown on borosilicate surfaces under continuous culture system. PLoS One 9(10):e108512

    PubMed  PubMed Central  Google Scholar 

  • Vatansever F, de Melo WCA, Avci P et al (2013) Antimicrobial strategies centered around reactive oxygen species-bactericidal antibiotics, photodynamic therapy and beyond. FEMS Microbiol Rev 37(6):955–989

    CAS  PubMed  Google Scholar 

  • Vert M, Doi Y, Hellwich KH et al (2012) Terminology for biorelated polymers and applications (IUPAC recommendations 2012). Pure Appl Chem 84(2):377–410

    CAS  Google Scholar 

  • Vilchèze C, Hartman T, Weinrick B et al (2013) Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat Commun 4:1881

    PubMed  Google Scholar 

  • Vleugels M, Shama G, Deng XT et al (2005) Atmospheric plasma inactivation of biofilm-forming bacteria for food safety control. IEEE Trans Plasma 33(2):824–828

    CAS  Google Scholar 

  • Vu B, Chen M, Crawford RJ et al (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14(7):2535–2554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weltmann KD, von Woedtke T (2017) Plasma medicine-current state of research and medical application. Plasma Phys Control Fusion 59(1):014031

    Google Scholar 

  • Wong HS, Townsend KM, Fenwick SG et al (2010) Comparative susceptibility of Salmonella Typhimurium biofilms of different ages to disinfectants. Biofouling 26(7):859–864

    CAS  PubMed  Google Scholar 

  • Xiong Z, Du T, Lu X et al (2011) How deep can plasma penetrate into a biofilm? Appl Phys Lett 98(22):221503

    Google Scholar 

  • Yin W, Wang YT, Liu L et al (2019) Biofilms: the microbial “protective clothing” in extreme environments. Int J Mol Sci 20(14):3423

    CAS  PubMed Central  Google Scholar 

  • Yong HI, Kim HJ, Park S et al (2015) Evaluation of pathogen inactivation on sliced cheese induced by encapsulated atmospheric pressure dielectric barrier discharge plasma. Food Microbiol 46:46–50

    CAS  PubMed  Google Scholar 

  • Yuan L, Hansen MF, Roder HL et al (2020) Mixed-species biofilms in the food industry: current knowledge and novel control strategies. Crit Rev Food Sci Nutr 60(13):2277–2293

    PubMed  Google Scholar 

  • Zhu YL, Li CZ, Cui HY et al (2020) Feasibility of cold plasma for the control of biofilms in food industry. Trends Food Sci Technol 99:142–151

    CAS  Google Scholar 

  • Ziuzina D, Patil S, Cullen PJ et al (2014) Dielectric barrier discharge atmospheric cold plasma for inactivation of Pseudomonas aeruginosa biofilms. Plasma Med 4(1–4):137–152

    Google Scholar 

  • Ziuzina D, Boehm D, Patil S et al (2015a) Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS One 10(9):e0138209

    PubMed  PubMed Central  Google Scholar 

  • Ziuzina D, Han L, Cullen PJ et al (2015b) Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar typhimurium, Listeria monocytogenes and Escherichia coli. Int J Food Microbiol 210:53–61

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Zhejiang University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiang, Q., Niu, L., Bai, Y. (2022). Antibiofilm Application of Cold Plasma in Food Safety. In: Ding, T., Cullen, P., Yan, W. (eds) Applications of Cold Plasma in Food Safety. Springer, Singapore. https://doi.org/10.1007/978-981-16-1827-7_4

Download citation

Publish with us

Policies and ethics