Skip to main content

Systems for Generation of Cold Plasma

  • Chapter
  • First Online:
Applications of Cold Plasma in Food Safety

Abstract

In last decades, cold plasma, as a promising nonthermal technology, has attracted a lot of attention. Common plasma resources include (pulsed) corona discharge plasma, dielectric barrier discharge plasma, low pressure/atmospheric pressure glow discharge plasma, and atmospheric pressure plasma jets. Most previous studies mainly focus on a diverse range of cold plasma in laboratory scale systems. The increasing demand for industrial adoption requires the scale-up of cold plasma systems for food applications. In this chapter, the common plasma sources are introduced in detail in terms of the basic principles with chemical and physical characteristics, the structures, and the factors affecting the production of reactive species. In addition, the advances about the promising plasma technology designs, such as the gas bubbles in situ-generated plasma-activated water (PAW), in food industry were reviewed in this chapter. The development and design of the plasma generation system with stability and controllability is still the key point for the successful implementation in industrial level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bourke P, Ziuzina D, Boehm D et al (2018) The potential of cold plasma for safe and sustainable food production. Trends Biotechnol 36(6):615–626

    Article  CAS  Google Scholar 

  • Chang JS, Lawless PA, Yamamoto T (1991) Corona discharge processes. IEEE Trans Plasma Sci 19(6):1152–1166

    Article  CAS  Google Scholar 

  • Gherardi N, Massines F (2001) Mechanisms controlling the transition from glow silent discharge to streamer discharge in nitrogen. IEEE Trans Plasma Sci 29(3):536–544

    Article  CAS  Google Scholar 

  • Kamgang-Youbi G, Herry JM, Meylheuc T et al (2009) Microbial inactivation using plasma-activated water obtained by gliding electric discharges. Lett Appl Microbiol 48(1):13–18

    Article  CAS  Google Scholar 

  • Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23(1):1–46

    Article  CAS  Google Scholar 

  • Laroussi M, Alexeff I, Richardson JP et al (2002) The resistive barrier discharge. IEEE Trans Plasma Sci 30(1):158–159

    Article  CAS  Google Scholar 

  • Liao X, Xiang Q, Cullen PJ et al (2020) Plasma-activated water (PAW) and slightly acidic electrolyzed water (SAEW) as beef thawing media for enhancing microbiological safety. LWT 117:108649

    Article  CAS  Google Scholar 

  • Lu P, Boehm D, Bourke P et al (2017) Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. Plasma Process Polym 14(8):1600207

    Article  Google Scholar 

  • Lu P, Cullen PJ, Ostrikov K (2016) Atmospheric pressure nonthermal plasma sources. Cold Plasma Food Agric:83–116

    Google Scholar 

  • Mai-Prochnow A, Alam D, Zhou R et al (2021) Microbial decontamination of chicken using atmospheric plasma bubbles. Plasma Process Polym 18:e2000052. https://doi.org/10.1002/ppap.202000052

    Article  CAS  Google Scholar 

  • Marafee A, Liu C, Xu G et al (1997) An experimental study on the oxidative coupling of methane in a direct current corona discharge reactor over Sr/La2O3 catalyst. Ind Eng Chem Res 36(3):632–637

    Article  CAS  Google Scholar 

  • Misra NN, Patil S, Moiseev T et al (2014) In-package atmospheric pressure cold plasma treatment of strawberries. J Food Eng 125:131–138

    Article  CAS  Google Scholar 

  • Muhammad AI, Liao X, Cullen PJ et al (2018) Effects of nonthermal plasma technology on functional food components. Compr Rev Food Sci Food Saf 17(5):1379–1394

    Article  CAS  Google Scholar 

  • Nastuta AV, Topala I, Grigoras C, Pohoata V, Popa G (2011) Stimulation of wound healing by helium atmospheric pressure plasma treatment. J Phys D Appl Phys 44(10):105204

    Article  Google Scholar 

  • Porto CL, Ziuzina D, Los A, Boehm D, Palumbo F, Favia P et al (2018) Plasma activated water and airborne ultrasound treatments for enhanced germination and growth of soybean. Innovative Food Sci Emerg Technol 49:13–19

    Article  Google Scholar 

  • Raether H (1964) Electron avalanches and breakdown in gases. Butterworths, London

    Google Scholar 

  • Schutze A, Jeong JY, Babayan SE et al (1998) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans Plasma Sci 26(6):1685–1694

    Article  CAS  Google Scholar 

  • Stollenwerk L (2010) Interaction of current filaments in a dielectric barrier discharge system. Plasma Phys Controlled Fusion 52(12):124017

    Article  Google Scholar 

  • Thirumdas R, Kothakota A, Annapure U et al (2018) Plasma activated water (PAW): chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci Tech 77:21–31

    Article  CAS  Google Scholar 

  • Xiang Q, Kang C, Zhao D et al (2019) Influence of organic matters on the inactivation efficacy of plasma-activated water against E. coli O157: H7 and S. aureus. Food Control 99:28–33

    Article  CAS  Google Scholar 

  • Zhao L, Adamiak K (2005) EHD flow in air produced by electric corona discharge in pin-plate configuration. J Electrost 63(3–4):337–350

    Article  Google Scholar 

  • Zhou R, Zhou R, Wang P et al (2020) Plasma-activated water: generation, origin of reactive species and biological applications. J Phys D Appl Phys 53(30):303001

    Article  CAS  Google Scholar 

  • Ziuzina D, Misra NN, Han L et al (2020) Investigation of a large gap cold plasma reactor for continuous in-package decontamination of fresh strawberries and spinach. Innov Food Sci Emerg 59:102229

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Cullen .

Editor information

Editors and Affiliations

Ethics declarations

Author PJ Cullen is CEO of PlasmaLeap Technologies, a supplier of the plasma technology.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Zhejiang University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cullen, P.J. (2022). Systems for Generation of Cold Plasma. In: Ding, T., Cullen, P., Yan, W. (eds) Applications of Cold Plasma in Food Safety. Springer, Singapore. https://doi.org/10.1007/978-981-16-1827-7_2

Download citation

Publish with us

Policies and ethics